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1. Introduction 

The present article offers a description of a system modeling the capacity of people to 
find a principle of classification (a distinguishing rule) of certain geometric objects, 
having only a small number of samples. The necessary requirement is that the system 
find the same principle of classification (among a number of a priori possible principles) 
which is found in the same problem by people. Such a requirement has naturally led to 
the following principles of system organization: 1) the language of the system describing 
the distinguishing rule should be terminologically akin to the language used in the same 
problems by a person; 2) since the same language can be used to describe several 
distinguishing rules applicable to the given input material, distinguishing rules in the 
system should be used in the order close to the order in which a person uses them. 

Lately, a so-called “structural” or “linguistic” approach to problems of pattern 
recognition has gained popularity [1]. Basically, this approach presupposes describing 
objects in terms of separate typical details or fragments. For the description of objects a 
“language” is created whose “words” are fragments and whose grammar is represented 
by the possible ways of combining those fragments. However, this approach meets with 
several difficulties. The first difficulty is the choice of the dictionary. Any dictionary of 
fragments chosen a priori would be applicable only to a very small number of problems. 
Such a dictionary lacks the main characteristic of human language: the same word (for 
example, “big” or “small” picture, “angle,” “inside,” etc.) in different problems (and 
sometimes even in different pictures in the same problem) has different meanings. To a 
certain extent this difficulty can be overcome through prior training [2]. It is obvious, 
however, that a dictionary of fragments formed a priori will not be successful in all 
problems: the hope of prior training is based on the supposition that the variety of 
patterns in a single problem is much smaller than their variety in the sum total of all the 
problems. The second difficulty of the structural approach lies in the fact that in pattern-
recognition problems the classification principle often cannot be described in terms of 
local characteristics of pictures, typical fragments, etc. Finally, the linguistic approach (at 
least at the present stage of its development) cannot offer any satisfying methods that 
could help search for such a pattern description. 

As a system that provides a possibility of a complicated and deep search, we should 
mention a program created by T. Evans [3]. This program models human behavior while 
solving complicated visual test-problems. Such tests are formulated as follows: “Two 
pictures are given; between them there exist certain correlations. Find analogous 
correlations between a third picture and one of five other pictures given.” Just as in the 
case of recognition problems, the evaluation of the test results is not defined by any 
concrete, strict rule, but is based on the comparison with the results of the corresponding 
experiment made on humans of admittedly high mental capacities. The behavior and 
results obtained by this program in such tests are comparable with those of humans. 
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Regrettably, Evans’s work almost completely ignores the problem of restricting the 
search — cutting off branches in the decision process; it is mostly adjusted to the 
specifics of the problem domain. Firstly, the language used to compare geometric 
patterns in these tests does not have to contain non-discrete characteristics, because the 
ready-made (on the basis of such non-discrete characteristics) predicates are sufficient: to 
the left, to the right, more, less, etc. This greatly restricts the number of variants to be 
analyzed. Second, in a problem with a choice from a fixed number of answers, the 
question of order of search becomes meaningless. Indeed, instead of choosing just one 
answer from the multitude of different answers formulated in a given language and 
satisfying the conditions of a certain problem — an answer that would be the most 
natural from a person’s point of view — in this case it is sufficient to choose one out of 
five given pictures, satisfying the necessary conditions. On the contrary, recognition 
training is not a multiple-choice problem1. 

A detailed analysis of the difficulties concerning the search for a description principle for 
classifying geometric patterns is given in the book by M. Bongard [5]. Bongard’s book 
describes a project of a system that, as it seemed to us, is capable of overcoming these 
difficulties. A more concrete and detailed description of this project can be found in [6]. 
In [7] and [8] consecutive (initial) variants of implementation of this system (as a 
computer program) and experiments on training can be found. The present article 
provides a description of algorithmic work in separate blocks, as well as of the entire 
system. In addition, description and analysis of several experiments is given. 

This program is designed for solving problems in which people describe distinguishing 
rules in strictly geometric terms: picture, line, part of picture, contour, area, length, slope, 
angle, subset, etc. The input objects for the program are flat black-and-white pictures 
given on a 45cm × 64cm raster. For training, the machine receives an input of several 
pictures divided into two classes. As a result of analyzing these pictures, the program of 
classification training is expected to formulate a rule for distinguishing one class of 
pictures from another. 

2. Objects and Operators 

2.1. Basic definitions. Pictures belonging to the training set, as well as all the 
intermediate results of analysis, will be called objects. There are three types of objects: 
pictures, numbers, and Boolean numbers (0 and 1). Transformations of objects into other 
objects are done by operators. The objects obtained on the output of one operator can be 
inputted to another operator. Such a superposition of two or more operators will also be 
an operator. 

Let us define a collection of objects. A collection of training pictures is a collection of 
objects. A sum total of objects received at the output of an operator as a result of applying 
this operator to all the objects of a certain collection will also be a collection of objects. 
We will distinguish collections of pictures, collections of numbers and collections of 

                                                 
1 We must notice that the initial ideas of the director of this research, M. Minsky [4], concerned application 
of this “language of description of correlations among figures” precisely for pattern recognition. Later the 
authors modified the problem. 
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Boolean numbers2. The concept of a collection of objects is convenient, on one hand, 
because a program never works on a sole object but always on their collections. On the 
other hand, it allows us to broaden the concept of operator. In the next section operators 
not applicable to separate objects will be described. Arguments and results of working of 
such operators can be only collections of objects. 

Each operator establishes a correspondence between certain objects of the input and 
output collections. For instance, let us say that a given outlined picture corresponds to 
some other picture (from which the first picture was obtained by using the operator 
“contour isolation”), or that a certain set of pictures (or their parts) corresponds to a 
picture that was transformed (by the use of the operator “breaking into parts”) into this 
set of pictures. If a certain operator puts every single object of the input collection into 
correspondence with a different single object of the output collection we will speak of a 
one-to-one correspondence. In the general case the correspondence among the objects of 
the collections does not have to be one-to-one. 

Two more remarks about the operators need to be mentioned: 1) operators can have 
several inputs (every one of which has a separate collection of objects as input data); 2) 
operators can have several outputs. Operators with several outputs are formally 
indistinguishable from a set of several operators each one having a single output. 
However, since constructively such a set represents a unity, we will speak of a single 
operator with several outputs. 

We will call distinguishing collection a collection of Boolean numbers in which 1) 
Boolean numbers are in one-to-one correspondence with the pictures of the training 
collection and 2) the Boolean number 1 corresponds to each picture of one class and the 
Boolean number 0 corresponds to each picture of the other class. 

2.2. Notation. 

1. Individual objects are represented by lowercase Roman letters: p: pictures; n: numbers; 
b: Boolean numbers. 

2. Collections of objects (of each of the three types) are represented by the corresponding 
uppercase letters: P, N, B. 

3. Indices: a) to distinguish collections of the same type among themselves, bottom 
indices are used: P1, Nφ. Analogously, bottom indices are used to distinguish individual 
objects of the same type that belong to different collections: pi, bc, ns ∈  Ns ...; b) to 
distinguish objects of the same collection among themselves, top indices are used: 

PpBb ij
kk ∈∈ ,4 , ... . 

4. Operators are represented by uppercase letters (with the exception of P, N, B). The 
application of an operator to an individual object is written as left product: Dp, Mkp, N = 
QB, ... . 

Some auxiliary operations, found in the description of the structure of elementary 
operators in §3, are organized by analogy with elementary operators even though they 
                                                 
2 Strictly speaking, the above definition of a collection of objects as a sum total (without taking into 
account its internal structure) is correct only for collections of the first-level of application. The definition 
of the level of objects, as well as a more complete definition of a collection of objects will be given in §3.5. 
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themselves are not such operators (they are not included in the list of elementary 
operators). They also transform objects into objects. An example of such an operation is 
the spreading of picture, W. For such operations we will use regular notation: p1 = Wp. 

5. As it has already been said, operators can have several (more than one) inputs and 
outputs. In such case we will represent the input and the output collections of objects by 
an ordered sequence of corresponding symbols inside round parentheses (N, B), P1 = 
U(P, B), (B1, B2, ..., Bk) = H (N, B0); we will represent in the same way the set of 
individual objects ( ) ij

m
i
ld

i
lc

i
lb

i
la Lbbbbb =,,, . 

6. In case a certain operator puts into correspondence to each object of the input 
collection one and only one object of the output collection, the indices will remain the 
same: ijij

x
kk XpnDpp == ,1 . 

7. We will say that a certain collection of objects G (gi ∈  G) characterizes a collection of 
pictures P (pi ∈  P) if there exists an operator O such that gi = Opi. We will also say in this 
case that an individual object gi characterizes the given picture pi. 

8. Subsets of the objects of a collection. Let us have a collection of Boolean numbers B 
and a certain collection of objects G such that among the objects of these collections (bi 
∈ B, gi ∈ G) there exists a one-to-one correspondence. Let the subset GB ⊂  G contain such 
and only such objects gi ∈ G that the corresponding Boolean numbers bi ∈ B equal 1. In 
this case we will say that the collection of Boolean numbers B defines the subset of 
objects GB of the collection G. 

2.3. Objects and collections of objects. Additional definitions, machine implementation. 
Pictures are given on a rectangular 45 × 64 raster. Points (elements) of raster αij (i = 1, 
2,…, 45; j = 1, 2,…, 64) may be in two states, 0 and 1. We will call elements in state 1 
“black” (excited), and elements in state 0 “white” (empty or non-excited). 

A picture p will be the totality of excited points of the raster. A picture that does not 
contain excited elements and corresponds to the empty picture will be denoted by φ. 

We will say that an element is added to a picture if this element passes into an excited 
state. An element is erased from a picture if this element passes into a non-excited state. 
The description of pictures in terms of sets of excited points of the raster will allow us to 
use operations, while describing algorithms of operators processing these pictures: union 
A ∪  B, intersection A ∩ B, complement A , difference A Z B and symmetrical difference 
A < B = (A Z B) ∩ (B Z A), as well as correlations between pictures (=, ⊆ ), all those in 
terms of set theory. 

Let us define neighboring points of the raster. We will use two variants of the 
neighboring position. We will call two points of the raster 

1jii
α and 

22 jiα neighboring 

points if: 

 1) |i1 – i2| ≤ 1, |j1 – j2| ≤ 1; 

or 

 2) |i1 – i2| + |j1 – j2| ≤ 1. 
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Every point of the raster (except the border points) is surrounded by eight neighbors in 
the sense 1 (within the area 3 × 3, with the center at the point) and by only four neighbors 
in the sense 2.  

We will say that picture p is connected if for any pair of points (α, ω) α ∈  p, ω ∈  p, there 
exists a sequence of points 

 α = β0, β1, ..., βl, βl+1 = ω,  βi ∈ p,  i = 1, 2, ..., l,  

such that each pair of points (βi, βi+1), i = 1, 2, ..., l is a pair of neighboring points. In this 
way two variants of the neighboring position of the points of the raster define two 
variants of connectedness of pictures. 

A column of the raster ξj is the sum total of the elements of raster αij, where j is fixed, 
and i goes through all its values (i = 1, 2, ..., 45). In the machine implementation, one 
memory cell of the M-20 machine corresponds to one column of the raster. 

Collections of pictures, as already mentioned, are sets of individual pictures. Let us 
suppose that the pictures in collections are ordered. The top index in the notations p5, pj ∈  
P corresponds to the ordinal number of the picture in the collection. In the same way 
objects in collections of numbers and Boolean numbers are ordered. 

Such a description of collections in the form of ordered sets of objects is customary for 
the machine implementation and, on the other hand, convenient for describing the 
structure of some of the program blocks. However, the order of objects in those sets is not 
essential for the functioning of the program. For instance, the result of program training 
does not depend on the order of pictures in the problem, i.e., on the order in which these 
pictures are inputted into the machine’s memory. 

Numbers — objects of the second type — are written in six binary digits. As shown by 
practice, such (rough) approximation does not affect the sum total of the problems to 
solve and does not appreciably narrow the area of program application. In addition, it 
allows a substantial saving of memory (making it possible to place seven numbers in one 
memory cell) and time. 

Some of the operators that give numbers on the output may sometimes not be applicable. 
For example, a round picture does not have any slope, thus the measuring operator slope 
of the picture (see page 43) in this case cannot give any numerical output. In order to 
mark such “non-measurable” values, one of these six-digit codes — namely, 111 111 — 
is used. We will denote it by the letter f. Consequently, numbers can take on values n = 0, 
1, ..., 62, f. 

Collections of numbers can be obtained on the output of some elementary operators as a 
result of applying these operators to other collections of numbers. In this way operators 
define the “dimensions” of collections of numbers on the output. We will say that the 
collections of numbers have the same dimension if they are obtained by applying the 
same elementary operator. Otherwise collections of numbers will have different 
dimensions. 

2.4. General structural scheme of the program. The program contains a certain 
number of elementary operators and combining rules that allow it to build complex 
operators. The goal of the program while solving a given problem is to build a complex 
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operator which, applied to a collection of training pictures, gives a distinguishing 
collection of Boolean numbers as output. The structural description of such a complex 
operator (in terms of elementary operators) will be the description of the distinguishing 
rule in the language of the program. 

The totality of primitive operators defines the set of distinguishing rules that can be 
described in this language in principle. Thus, the first issue that should be confronted 
while creating a program is the choice of an adequate collection of primitive operators. 

For every problem that interests us it is necessary that there exists a distinguishing rule 
described in terms of these primitive operators. Moreover, it is required that this 
distinguishing rule coincides (not only in the training material but in the entire set of 
pictures that people classify as belonging to a certain class) with the principle of 
classification that is found in the same problem by people. On the other hand, the 
program in the solution process, when presented with a collection of training pictures, 
must be able to find this and precisely this distinguishing rule. Thus, the second problem 
to be solved is the organization of the effective search for the distinguishing rule. 

Since a complex operator can be built via consecutive application of primitive operators 
to the objects obtained on the output of other operators, the general scheme of the work 
of this program is the following: All the obtained object collections are kept in machine’s 
memory. On each work-cycle of the program, a primitive operator is applied to one of 
these collections, producing on the output new collections of objects. These collections 
are also saved in machine’s memory. Thus, in the beginning there exists only the initial 
collection of training pictures; then, in the process of work, the number of object 
collections in memory grows until one of the collections of Boolean numbers recorded in 
memory proves to be the distinguishing one. 

For each collection of objects appearing in machine’s memory it is known which one of 
the elementary operators was applied and which one of the input collections was 
transformed to obtain the given collection. This allows us to recreate the “sequence” of 
the elementary operators that led to obtaining a distinguishing collection from the 
collection of training pictures, that is, it allows us to recreate the unknown structure of the 
complex operator applied. 

Thus the capacity of the program (the set of problems which the program is able to solve) 
is defined by the totality of primitive operators and the order of their consecutive 
execution. The structure of primitive operators is described in §3, while the order of their 
execution in §4. 

It must be noted that in creating the given program the goal was not to find all of the 
primitive operators necessary to solve a wide variety of problems (for example, all of the 
problems from [5]). We have tried to find only the basic types of operators rather than a 
complete collection of operators of each type and to build corresponding schemes of 
consecutive application for them. In consequence, lists of some types of primitive 
operators (for instance, drawing and measuring operators, as well as operators breaking 
pictures into parts — see the following section) could be substantially enlarged and the 
spectrum of solvable problems would be broadened without changing the program’s 
structure. Thus the version of the program described here should be taken as an 
illustration (realized on a computer) of the general principle of the program’s structure. 
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3. Primitive Operators 

3.1. Preliminary considerations. Primitive operators can be understood as individual 
“words” of the language describing distinguishing rules. The main part of this section 
represents the “dictionary” of this language. Every paragraph of this section contains a 
description of elementary operators on two principal levels. 

The first level concerns the function of operators, which is already reflected in their 
names. The names of operators and the types of their input and output are listed on the 
next page. Even though at this level the descriptions of the primitive operators are not 
complete, they are sufficient for understanding the basic principles of the program’s 
organization. Moreover, the external behavior of the program apparently does not depend 
on the concrete implementation of these operators. In other words, application of 
alternative variants of the algorithm of primitive operators satisfying the meaningful 
names given in the list would, it seems to us, produce results differing little from those 
obtained in real experiments with the program described here. 

The second, more detailed level of description of operators concerns their structure. In 
this, emphasis is placed on the description of the function of individual operators rather 
than on their concrete machine realization. Their working algorithms are given only in 
case where such a description seems to be the clearest one. The explanations are 
illustrated by a number of examples. 

One more problem raised in this chapter is the problem of the appropriateness of using a 
given operator in the program. It is not always possible to substantiate the use of each 
individual operator — such a question should be analyzed for the totality of all the 
primitive operators. If the chosen collection of operators allows the description of 
sufficiently varied distinguishing rules for a large number of interesting problems, we can 
say that the given language is appropriate for the solution of these problems. In the last 
paragraph of this section the reader can find several examples of “phrases” — complex 
operators built on the basis of primitive operators. This paragraph pursues a purely 
illustrative goal: it attempts to demonstrate, on one hand, the flexibility and versatility of 
the language being used, and, on the other hand, the limits of its capacity. 

3.2. Drawing operators. 3.2.1. Function. Drawing operators take a picture on the input 
and transform it into another picture. The results of work of three primitive drawing 
operators — contour isolation, contour filling and convex hull filling are shown in Fig. 1. 

During the processing of the input picture the drawing operators can get information 
about the general character of the picture itself. This is achieved by comparing pictures 
on the input and the output of the operator. Their identity (the invariance of the input 
picture in relation to the given transformation) makes it possible, by using the operator 
contour isolation, to distinguish a “contour” picture from a “non-contour” one, and by 
using the operator convex hull filling, to distinguish a “convex” picture from a “concave” 
one. In this way, an additional output of drawing operators is obtained, namely, Boolean 
numbers. As a result of applying different drawing operators to collections of pictures, 
the output collections of Boolean numbers will define the subsets of “contour”, “non-
contour”, “concave”, “convex”, etc., pictures. 



 8

Thus, a collection of pictures is supplied on the input of a drawing operator; on the output 
we get a collection of pictures and two (mutually complementary) collections of Boolean 
numbers, defining, respectively, two subsets of the input collection of pictures. One 
subset contains pictures that are invariant in relation to the work of the given operator; 
the other subset contains the non-invariant pictures. 

List of elementary operators   

A   

Area of picture Pm Nm 

Length of lines Pm Nm 

Coordinates of the center of gravity Pm 2Nm 

Slope of elongated picture Pm Nm 

Main axes of picture Pm 2Nm 

Contour isolation (C) Pm Pm, 2Bm 

Contour filling  (F) Pm Pm, 2Bm 

Convex hull filling (T) Pm Pm, 2Bm 

B   

Decision operator B1 — 

Logical operator (L) Bm 4B1, 4B2, ...., 4Bm-1 

Threshold operator (H) Nm, Bm kBm 

Number of parts (Q) Bm N1, N2, ...., Nm-1 

Comparison (R) Nl, Nm, Bm kBm 

Union (U) Pm, Bm P1, P2, ...., Pm-1 

C   

Separation by connectedness (S) Pm Pm+1, Bm+1 

Separation by borders (J) Pm Pm+1, Bm+1 

Separation by branching nodes Pm Pm+1, Bm+1 

Note. For each operator, types of input (first column to the right) and output (second 
column) collection of objects are indicated. P: collections of pictures; N: collections of 
numbers; B: collections of Boolean numbers. The bottom index is the number of level. 2Nm 
should be read as: “two collections of numbers of the m-th level”. 

3.2.2. Structure. Contour isolation (C) Such elements of the picture are erased, which on 
the input picture have all the neighboring (in the sense 1) points black.  

Contour filling (F). In the algorithm of contour filling an intermediary process F* is used: 
the separation of the internal area F*p of the initial picture p. The output of the operator 
contour filling is defined by the formula Fp = p ∪  F*p. 
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The separation of the internal area F*p is done in the following way: 1) a negative p  of 
the input picture is constructed; 2) on this negative remove all the connected in the sense 
1 areas of the picture adjacent to the borders of the raster. The rest will be the internal 
area F*p. 

 
Figure 1. Work of the drawing operators contour isolation C, contour filling F, convex hull 
filling T, and separation by connectedness S. 

The algorithm of erasing of connected areas coincides with the algorithm S* of the 
separation of connected areas (see p. 29) in many details; consequently, we do not 
describe it here. 

Filling of convex hull (T). First let us look at the auxiliary operations with the pictures 
that help build the operator convex hull: T1 — constructing the negative of the upper part 
of the convex hull, and T2 — constructing the negative of the lower part of the convex 
hull. 

The construction of the negative of the upper part of convex hull is broken into several 
consecutive stages (their number depends on the character of the input picture p). A stage 
can turn out “successful” if it led to constructing a certain part of the negative of the 
convex hull, and “unsuccessful” in the contrary case. The construction of the picture T1p 
at each stage is done consecutively by entire columns; an elementary step of a stage 
consists of adding a certain number of points of the next column to the already obtained 
picture T1p. 

Below, algorithm T1 is given; its work is illustrated in Fig. 2. 
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Initially T1p = φ. 

1. Moving from left to right we search at each column ξj of picture p until we see 
the first non-empty column; the columns on T1p that correspond to the empty 
columns of picture p become black. 

2. In this (first non-empty from left) column we find the highest excited point α. 

3. Analogously, moving from the right border of the raster towards its left 
border, we look at the columns of picture p until we find the first non-empty 
column. 

4. In this column we find the highest excited point ω. 

5. Two points of the raster α and β are arguments of the main process (6) of 
algorithm T1. Initially they are assigned the following values: α := α, β := ω. 

6. Moving from the column containing the point α to the right we consequently 
blacken on the picture T1p all the points that lie above the straight line 
connecting the points α and β. This process can be aborted on two accounts: 

a) Picture T1p intersects with p. We find the highest point of the column 
p∩T1p and register it as a new value of β; then on picture T1p we erase 
everything created on the last “unsuccessful” stage (after the previous 
assignment of values to the arguments α and β), and repeat the process 
6 (with the new value of β). 

b) The straight line connecting α and β went outside the borders of the 
raster. If in this case β = ω then the construction of the upper part of 
the negative of the convex hull T1p is complete. If β ≠ ω, we assign 
new values to the arguments of process (6): α := β and β := ω, and the 
process (6) is repeated. Analogously for the negative of the lower part 
of the convex hull T2p. 

Let us denote p1 the picture 

 ( )pTpTp 211 ∪=  

Then the algorithm of filling the convex hull shall be 
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Figure 2. An example of constructing the negative of the upper part of convex hull. On the 
upper left is the input picture. The four columns of pictures under it represent the sequence 
of intermediate results of building the output picture. The pairs of consecutive pictures in 
these columns represent the beginning and the end of one stage of the work of this 
algorithm. Each of the columns ends by a “successful” stage. 

3.3. Measuring operators. 3.3.1. Objective. The measuring operators put certain 
numbers (results of measurement) in correspondence with each input picture. The 
usefulness of such operators for building distinguishing rules is obvious. Indeed, in these 
problems classes can differ by size or by location of elements in a picture (see Problems 
#22 and #36 in the Appendix), by the spatial orientation of elements (for example in 
Problem 5), etc. Thus it is helpful to measure the corresponding parameters of elements 
in order to use the measurement results for classification. 

In the program the following measuring rules are represented (see the list): coordinates of 
the center of gravity, area of the figure, length of lines. (The last operator should be 
applied only to pictures consisting of lines. Anticipating the following material, let us 
notice that the operator length is applied only after the application of the drawing 
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operator contour isolation.) In addition, some parameters are measured that characterize 
the length and width of a figure — the values of its small and big axes. These parameters 
we will call values of the main axes of a figure. If the picture has considerable 
eccentricity then the slope of the longitudinal (big) axis is measured. The measuring of 
values of both small and big axes of a figure, as well as of the slope of its longitudinal 
axis are all combined into a single operator. 

3.3.2. Structure. The area is defined according to the number of black points 

∑=
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Coordinates of the center of gravity: the outputs of this operator are as follows: 
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Length of lines. Let us see the structure of this operator in more detail. The length of lines 
on a contour picture could also be to a certain extent calculated according to the number 
of the black points on this picture. However, such an appraisal is unsatisfactory on the 
following accounts: 1) the contour of double thickness (Fig 3, b) contains twice as many 
black points as does the single contour of the same length (Fig. 3, a); 2) the quantity of 
black points in a rectangular segment depends on the slope and, all other conditions being 

equal, can become 2  times as big or as small (Fig. 4). 

The first difficulty can be avoided by making the double lines twice as thin. 

This procedure consists in consecutive erasing of some individual black points from the 
initial picture. Whether a point is to be erased is defined solely by the configuration of 
excitement of its neighbors. The character of excitement of all the other points of the 
raster plays no role here. The four types of elements to be erased (differing by the 90° 
rotation of its configuration) are shown in Fig. 5. The thinning of lines is performed in 
entire columns — the elementary stage (1) consists of erasing a certain set of points in 
current column in a given picture. Step 2 of the procedure defines the order in which the 
columns are processed. A procedure for the thinning of lines is shown on Fig. 3, b, c, d. 
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Figure 3. Line thinning 

 

Figure 4. Equivalent straight line -segments. 

 
Figure 5. The four types of erasable elements in the procedure of 
line thinning. 

 
Procedure (V) starts from column j = 1. 

1. In this column, the erasable elements of all four types are consecutively 
identified and erased (Fig. 5): 

a) First we find all the erasable elements of the 1st type; if there are none, 
we pass to point b; if we find such elements, we erase them and repeat 
the process starting from point a of the same column; 
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b) On the resulting picture we find all the erasable elements of the 2nd 
type; if there are none, we pass to point c; if we find such elements, we 
erase them and repeat the process starting from point b of the same 
column; 

c) Analogously we erase the elements of the 3rd type; 

d) On the resulting picture we find all the erasable elements of the 4th 
type; if there are none, the application of process 1 to the given column 
ends; if we find such elements, we erase them and repeat the process 
starting from point c of the same column. 

2. After that the following situations are possible: 

a) At the previous step no erasable elements of the 3rd or 4th types were 
found. If the processed column was not the last one (j ≠ 64), then 
process 1 is applied to the following, j+1-th column; in the contrary 
case the line-thinning procedure is complete. 

b) At the previous step some elements of the 3rd or 4th types were 
erased. In this case we come back one step and apply the process 1 to 
the previous j–1-th column. 

After line thinning the number of black points s and the number of edge-points s′ is 
calculated. A point is called an edge-point if it is black and there exists at least one pair of 
neighboring (in the sense 2) black points (

1jii
α , 

22 jiα ) such that they are neighboring (in 

the sense 1) in relation to each other. Examples: on the horizontal segment of Fig 4 there 
are no edge-points; on the sloping segment all the points except the ends are edge- points. 

Finally, the length of lines is defined by the formula: 

 l = s – (1 – 2 /2) s′. 
Main axes of a figure. When working out an algorithm of measuring the length of the 
figure’s axes we have used the fact that the principal moments of inertia of an elliptical 
figure are proportional to the squares of the big and small axes of the ellipse. It allows us 
to reduce the measurement of the length of the width of a figure to purely computational 
operations: the calculating of the principal moments of inertia, and the measurement of 
the slope of the main axis of the figure, to calculating the angle between the main axes of 
inertia of the figure and the axes of coordinates of the raster. For this it is necessary to 
first calculate the components of the inertia tensor of the figure: 
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The values of the main axes of the figure are calculated by the following formulae: 
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then the measured figure is considered “round” and has no slope (nϕ = f). If the above 
condition is not fulfilled, the relation tan(2ϕ) = 2I12 / (I11 – I22) is used to find the slope. 

The values of the main axes and the slope are calculated according to the formulae given 
above if s ≠ 0. If s = 0, we suppose that a1 = a2 = 0, nϕ = f. 

Logarithmic scale. Area of figure, length of lines and values of axes are coded in the 
logarithmic scale. For this, a general subprogram of taking logarithms is used in the 
corresponding measuring operators. The arguments of the subprogram — s, l2, 2

1a , or 2
2a  

— are transformed into six-digit binary codes which, precisely, are the numerical output 
of the said measuring operators. 

Since the outputs of the logarithm-taking program can assume only 63 (integral) values, 
the choice of the base of logarithms plays an important role. On one hand, the 
approximation as a result of rounding off should not be too big; on the other hand, these 
63 values should encompass the entire range of the possible values of these arguments. In 

the described subprogram this base was chosen equal to 4 2 . As a result the area was 
coded with a 20% precision (in other words, a twofold change of area corresponded to a 
change of logarithm by four gradations). The coding precision of length of lines and of 
axes values turns our to be twice as large, since in these cases the arguments of the 
logarithm-subprogram are squares: l2, 2

1a , 2
2a . 

The slope of the horizontal axes of the figure is coded very approximately — only 8 
gradations of non-oriented slope are distinguished (Fig. 6): nϕ = 0, 1, …, 7, f. 

3.4. Transformation of numbers into Boolean numbers 

3.4.1. On the appropriateness of using threshold operators. 

In order to be able to use the measuring operators for building distinguishing rules, we 
need to be able to transform the output objects of these operators (numbers) into Boolean 
numbers. Indeed, a distinguishing rule is a complex operator that is applied to pictures 
and gives as its output Boolean numbers. 
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Figure 6. Eight gradations of slope and sixteen gradations of direction. 

The common procedure of transformation of numbers into Boolean numbers consists of 
inputting predicates, for instance, the type of comparing with a threshold (or several 
thresholds) and re-coding the numbers into Boolean zeros and ones according to the area 
(related to threshold(s)) into which these numbers fall. 

It is useful to include such threshold operators into the list of primitive operators for 
building distinguishing rules. They should be included as a sequence-measuring operator 
— threshold operator. The application of “threshold operators” to the results of work of 
different measuring operators (length, area, coordinates of center of gravity, etc.) allows 
us to describe the pictures in terms that are equivalent to such common “human” terms as 
“long”, “short”, “big”, “medium”, “small”, “left,” and so on. 

Of course it is not always the case that distinguishing rules boil down to measurements 
with the following cutting off along at the threshold. In the simplest problems such a pair 
of operators can, indeed, directly define the corresponding distinguishing rule. Examples 
of this are problems in which classes are distinguished by the area of figures in the 
pictures (“big”–“small”), length of lines (“long”–“short”, see Problem #22), slope of 
figures (“vertical”–“horizontal”, see Problem #5), etc. However, in more complicated 
problems such concepts as “big” and “small” can only be a part of the description of the 
distinguishing rule, defining the subset of pictures in which big (or, correspondingly, 
small) figures are depicted (see Problem #42). 

Speaking about threshold operators, it is necessary to notice that the very expression “use 
of operators” is ambiguous. Primitive operators are used, on one hand, as words of the 
language that describes distinguishing rules and, on the other hand, for searching for 
these rules in the process of problem solving. As it has been shown, the threshold 
operators are necessary for the description of distinguishing rules. Here we shall analyze 
which threshold operators (or, more precisely, which values of thresholds and for which 
parameters) can be appropriately used in the process of executing combinations of 
primitive operators in the search for distinguishing rules. 

3.4.2. Possible ways of choosing thresholds in the search for distinguishing rules. One 
of the ways of establishing thresholds is evident. If the maximal value of a certain 
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parameter for pictures of one class is smaller than its minimal value for the pictures of the 
other class, it is enough to establish a threshold between these two values. Precisely this 
threshold will define the distinguishing rule in this case. Such a way of establishing 
thresholds could be successfully used in solving certain problems. Unfortunately, it is 
useful only in those simplest cases when distinguishing parameters according to the 
threshold is the final step in the search for the distinguishing rule. 

Another way consists of trying all the variants of thresholds for each parameter hoping 
that some of the collections of Boolean numbers (obtained as a result of separating 
collections of numbers according to thresholds) would be useful for future construction of 
the distinguishing rule. The search tree in this case would have a large number of 
branches, since each result of measurements can be converted to collections of Boolean 
numbers in many ways (setting different threshold values). In case of such an unlimited 
use of threshold operators it can be guaranteed that the threshold operator necessary for 
the distinguishing rule will be found. Regrettably, this method would also produce many 
distinguishing rules totally implausible from the human point of view. 

Distinguishing rules satisfying only the given material but incorrectly distinguishing the 
entire set of objects (which will be found in the given problem upon examination) will be 
called superstitions [5]. The fact that there is a large number of superstitions among such 
distinguishing rules that can be constructed by execution of all the possible variants of 
thresholds forces us to give up this method. Having constructed all the possible 
distinguishing rules, we cannot get rid of all those that seem unnatural from the human 
point of view. For this we lack the formal criteria to judge whether an already constructed 
rule corresponds to the given problem. Moreover, the aim of the present work is to find a 
constructive method of building satisfying distinguishing rules. This is why it is 
necessary to introduce an additional restriction on searching by cutting those branches of 
search that lead to superstitions. 

Thus, a certain criterion of choosing the threshold values is necessary for the application 
of threshold operators in search of distinguishing rules. Such a criterion must, on one 
hand, choose in each problem, in each collection of numbers only those threshold values 
that can lead to the solution, while discarding the paths leading to superstitions. On the 
other hand, the criterion must be local, that is, it should allow discarding completely the 
following branches of search without analyzing the possible consequences, using only the 
data contained in the input collection of numbers. 

3.4.3. Local criterion of choice of threshold values. This criterion was proposed by M. 
Bongard under the name “breaking up into lots” [5]. In continuation, we will give 
arguments in support of this criterion and describe psychological experiments supporting 
the idea that a similar criterion is applied by people in the solving of geometric problems. 

The criterion is based on the following idea. Let it be that in a certain problem (but not in 
the sum total of all problems being solved) all the numbers in a certain collection of 
numbers can have only two values. Then it would be sufficient to introduce a single 
threshold dividing these values. All the other threshold values would lead only to a 
meaningless increase of the search.  

As a rule, numbers in the collection take many values. Sometimes they may be grouped 
around several values (forming “lots”). It seems natural to apply the above-mentioned 
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procedure also in this case, establishing the threshold values among these lots and thus 
similarly coding the numbers that get into one lot. In this way it is possible to choose the 
threshold values for such particular cases when numbers in a collection (or numbers in 
the sum total of all numbers) take only a small number of values or are grouped around a 
small number of values. 

What to do, however, in case of a large number of values that cannot be broken up into 
lots? An essential characteristic of the proposed method is that a collection of numbers is 
coded in Boolean numbers only in case it can be broken up into lots. Otherwise the 
coding is not done. This can be justified by the fact that, as it will be shown below, the 
problems in which the important parameter for building a distinguishing rule cannot be 
broken up into lots are difficult for people or cannot be solved by people. This is why the 
program that uses this criterion will not be able to solve precisely those problems that are 
difficult for people. Moreover, a collection of numbers that is not divisible into lots can 
nonetheless be used in building a distinguishing rule, in case a subset of the given 
collection or a certain combination of parameters (non divisible into lots) can be broken 
up. As examples we can cite problems #30 and #34, in which the area of figures is not 
divisible into lots, but makes part of the description of the corresponding distinguishing 
rules. In §3.4.5 and §3.6 we describe the operations necessary for this. 

Of course, the above considerations cannot be seen as a sufficient argument for this 
criterion. Its appropriateness is understood intuitively in each concrete case of 
constructing drawing and measuring operators. Thus we did not conduct special 
psychological experiments showing that such operations can be used by people in solving 
problems. On the other hand, the proposed criterion of threshold selection by coding 
numbers with Boolean numbers is not evident and, therefore, required such experiments. 

On M. Bongard’s suggestion, L. Dunayevsky conducted a series of experiments [5]. The 
subjects were presented with problems consisting of 24 pictures separated into two 
classes. The figures on the pictures differed from one another by six parameters. Two of 
those parameters (different in different problems) were part of the description of the 
classification principle. The experiments showed that if one of the two essential 
parameters cannot be broken up into lots, the average time of solving the problem 
increases almost twofold (as compared with the case when both parameters can be broken 
up. If none of the two parameters can be broken up, the solution time increases even 
more, or the subjects simply refuse to solve the problem. It must be noted that the 
parameters were standardized and their number was restricted; this was done in order to 
obtain uniform quantitative results. Such restrictions, as well as a comparatively large 
collection of training pictures used in the experiments, make it easier for people to find 
the solution in cases where a threshold based on a non-divisible parameter must be 
chosen. Usually, even one non-divisible parameter is enough to stop people from solving 
the problem. 

In sum, the experiments have shown that people solve easier such problems in which the 
essential parameters can be broken up into lots. Yet the true experimental verification of 
the fact that for a large number of geometric problems the criterion of breaking up into 
lots is really effective for choosing thresholds (in the sense of cutting off “hopeless” 
branches of the search) can be obtained only while training a system that uses the 
procedure of breaking up into lots as one of its internal blocks. For this it is necessary to 
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first formalize the criterion of breaking up into lots — to find a precise algorithm 
allowing us to define, from the input collection of numbers, the thresholds breaking these 
numbers into lots. 

3.4.4. Algorithm of breaking up into lots. The algorithm consists of several dissimilar 
parts and contains much branching. Some parts are evident, while others have to be 
substantiated. As a result, in the description of the individual parts of the algorithm we 
had to answer not only the question “how” they are made, but “why” these parts are made 
precisely this way. This is why we opted for describing the main ideas first (not in the 
precise order in which they appear in the algorithm). Then we will briefly characterize 
the general structure of the algorithm and its modifications. 

 
Figure 7. Two variants of breaking up the bar chart. 

The process of finding the distinguishing thresholds is built in the following way. First a 
bar chart is constructed h(ν), ν = 0, 1, …, 62. It shows how many numbers of the given 
value ν are contained in the input collection. From now on the algorithm works only with 
this bar chart. 

Let us suppose that we have already introduced some thresholds t1, t2, …, tk-1 that divide 
the chart into k areas (Fig. 7). For each of these divisions, let us introduce a numerical 
value κ, the index of compactness. Let q be the volume of the sum total of numbers, 
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turned out to be in this area. Then the index of compactness for the given system of 
thresholds is calculated by the formula 
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With such a system of threshold-evaluation it is feasible to choose the best among all 
possible divisions of the bar chart into areas: the division with the minimal value of 
compactness index κmin. If κmin is smaller than a certain preset value of κ* then the 
problem is solved: the best system of thresholds is found breaking up the totality of 
numbers into lots. If κmin ≥ κ* then the given group of numbers cannot be broken into 
lots. 

The value of κ* was found experimentally. In the first variants of the program κ* was 
given the value of ⅜. Then we found out that this value can be reduced to ¼. These cases 
were not much different from each other. In the majority of cases, in the first cases the 
breaking up into lots occurred more frequently. Since at each such division the program 
prints out the value of κmin, the records showed that all the relevant (from the point of 
view of the distinguishing rule) break-ups occurred in all problems with rather small 
value of κmin. It is difficult to say anything more precise about this experiment, since the 
program’s behavior greatly depends on the kind of problem given. Apparently, the 
changes in the program, brought about by the change of κ* were too insignificant to be 
able to draw general conclusions. All the experiments described in §5.5. were conducted 
with κ* = ¼. 

In addition to the numerical estimate of divisions, the following restrictions for the 
possible divisions of groups of numbers were used: 

1. q ≥ 8 — small groups of numbers cannot be broken into lots; 

2. qi > q/8 (i = 1, 2, …, k) — the lots themselves should not be too small; 

3. k ≤ 4 — the groups of numbers can be broken only into 2, 3, or 4 lots. 

While working out the algorithm of breaking up into lots we paid special attention to the 
speed of work of the program. As the experiments have shown, the number of possible 
trial break-ups (different subsets of numbers) in some problems can reach several 
thousands. Since the calculation of the break-up estimate κ is a rather lengthy procedure, 
it is not feasible to do the full execution of all the possible divisions of the bar chart into 
different number of areas, even while taking into account the restrictions 1–3. 

At the same time there exist situations (for example, the case of a uniform distribution of 
numbers in a group), when it is possible to say without the execution (judging on other 
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criteria) that the bar chart cannot be broken up into lots. Analogously, it is possible to 
find the local criteria that would allow us to estimate for each area of the bar chart 
whether the distinguishing threshold is possible there. To speed up the work of the 
algorithm of breaking up into lots, we have used some a priori “quick” criteria of the 
choice of thresholds that allow us to substantially reduce the search. 

Let us number all the values νj, j = 0, 1, 2, ..., J, such that h(νj) ≠ 0 in the following order: 
ν0 < ν1 < … < νJ . Now let us analyze the intervals (νj-1, νj,), j = 1, 2, …, J. 

The reduction of execution consists in that from the sum total of all such intervals of the 
bar chart (ν0, ν1), (ν1, ν2), …, (νj-1, νj), a certain number of intervals–candidates is 
selected, inside of which it is permitted to introduce distinguishing thresholds. Then the 
program analyzes all the possible combinations of only those intervals–candidates that 
define the division of the bar chart into areas. For each of such divisions, according to the 
above described scheme, the estimate κ is calculated and the division with the minimal 
value of κ is chosen. 

 
Figure 8. Procedure of preliminary selection of intervals inside of which distinguishing 
thresholds can be established. On top, the initial bar chart h(ν). Above, fine consecutive 
steps of eliminating intervals between the points h(ν) ≠ 0. The big areas are underlined. 1: 
elimination of small intervals; 2: comparison of pairs of intervals; the numbers under the 
intervals correspond to the order in which the intervals are eliminated; 3: “gluing together” 
the “tails” (ends) of the bar chart; 4: elimination of equal intervals (in sequences between 
large areas). The summary volume of the two areas broken up by each interval is written 
above the corresponding intervals. 
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The selection of intervals–candidates occurs in several consecutive steps. At each step 
certain intervals are eliminated from the sum total of intervals. The intervals remaining as 
a result of the work of this algorithm are considered intervals–candidates. Fig. 8 
illustrates the work of the algorithm of the selection of intervals–candidates. 

1. Cross out all the small intervals. From the sum total of all the intervals keep only those 
that satisfy the condition that νj – νj-1 > 3 ρ /2, where ρ = (νj – ν0)/(q – 1). 

2. Comparison of pairs of intervals. 

Intervals that have not been eliminated divide the bar chart into several areas. The 

volume of each of these areas Σh(ν) is calculated (addition is made over all ν in the given 
area). We will distinguish big areas (whose volume is > q/8) and small ones (whose 
volume is ≤ q/8). We analyze only such pairs of not-eliminated consecutive intervals that 
are separated by small areas. 

We do consecutive execution (starting from intervals with small numbers) of such pairs 
until the first pair of non-equal intervals is found. If such a pair exists, we cross out the 
smaller interval of the pair and repeat procedure 2 from the start. If among the not-
eliminated intervals such a pair of consecutive non-equal intervals separated by small 
areas is not found, we pass to the next step. 

3. Restriction 2 on page 20 defines the upper and lower limits for the first and last of the 
intervals–candidates, respectively: each one of them must separate from the bar chart by 
more than ⅛ from the total volume of the sum total q. We eliminate all the intervals (νj-1, 
νj,), j = 1, 2, …, J, for which 
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As a result of the procedures 2 and 3 the bar chart is broken up into several big areas, 
among which chains of small areas may appear, separated from one another by equal 
(inside the limits of the entire chain) intervals (Fig. 8).  

4. We analyze one by one all these chains that separate big areas. For each interval of a 
chain we calculate the summary volume of the two areas it separates. We leave the 
intervals for which this summary volume is minimal, and eliminate all the other intervals. 

(On the sample bar chart on Fig. 8, at the beginning of step 4, there exist three separating 
chains of intervals. The first “chain” contains only one interval; it is not eliminated. The 
second one contains two intervals. The summary volumes of the contiguous areas 
(numbers above these intervals) are equal; thus those intervals are not eliminated. The 
third chain contains six intervals, only one of which remains.) 

5. If after this there still remain chains of intervals divided by small areas in the bar chart, 
then we keep the interval with the smallest number in each chain. All the other intervals 
are eliminated. 

Thus, the principal steps of the algorithm of breaking up into lots are: 

A. Constructing a bar chart 

B. Search for the intervals-candidates. 
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C. Execution of the possible combinations of the intervals–candidates — the choice 
of the best break-up. 

At each of those steps it can turn out that the given group of numbers cannot be broken 
up into lots. This happens if 

a) The group is too small (q < 8), or there is at least one “non-measurable” value in 
this group,  

b) At some stage of preliminary choice of thresholds it turns out that there are no 
intervals-candidates, 

c) κmin ≥ κ*. 

The case in which breaking up into lots is not possible is most frequently found already at 
the first stages of the algorithm’s work. This allows us to save a significant amount of 
time. In the most complicated case (“poorly ordered” large group of numbers) the work 
of the entire algorithm takes up about 0.2 sec. 

Modifications of algorithm defined by dimension.  

Depending on the dimension of the input group of numbers, various modifications of the 
algorithm of breaking up into lots can be used. The following three modifications of the 
algorithm correspond to the three dimensions: 

1) “Natural numbers” — outputs of the operator number of parts (page 36) 

2) “Continuous numbers” — outputs of all measuring operators, except the operator 
slope of the figure. 

3) Slope and orientation. 

The described algorithm of breaking up into lots corresponds to the first modification and 
is applied to the group of numbers that by their nature are natural numbers. For instance, 
the number of figures in a picture can be expressed only by integers. On the other hand, 
the “continuous” outputs of the measuring operators mentioned above take integral 
values ν = 0, 1, 2, ..., 62 as a result of rounding up. If, for instance, in the second group 
we find only numbers with neighboring values ν0 and ν0+1 and those are natural 
numbers, the group will break up into two lots ( 2

iσ = 0; i = 1, 2, and, consequently, 

κmin=0). On the contrary, if they are continuous numbers (for instance, the result of work 
of the measuring operator area on a certain group of pictures), it does not mean that the 
areas of figures on the corresponding pictures take only these two values. In reality areas 
can be “spread” inside the intervals [ν0, ν0+1) and [ν0+1, ν0+2) and should not be broken 
up into lots. Hence the ways to calculate the continuity of the groups of numbers: 

a) Distinguishing thresholds can be introduced only in such places where there is 
enough space between the areas;  

b) The discrete bar chart should be replaced by its continuous variant consisting of 
rectangles of unitary width (Fig. 9), and all the sums in ν (while calculating the 
variance in the estimate of κ) should be replaced by the corresponding integrals. 

Thus, the second modification of the algorithm of breaking up into lots consists of the 
following: 
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a) Modifications of step 1 of the procedure of choosing the intervals–candidates — 
if 3 ρ /2 ≥ 1, then the previous variant works; if 3 ρ /2 < 1, then all the variants (νj-

1, νj,) for which at the same time νj –νj-1 = 1, h(νj-1) > q/8, h(νj) > q/8, should be 
crossed out; 

b) The variances in case of continuous bar chart 22 ~,~ σσ i  can be easily expressed 

through the variances of discrete bar chart (p. 19) 
22~ σσ =  + 1/12, 22~

ii σσ =  + 1/12. 

As a result, the estimate κ in this modification of the algorithm is calculated by the 
formula: 
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Groups of numbers with a dimension of slope, in addition of being continuous, have yet 
one more particular characteristic: the slope is defined with a precision of 180° period, 
which corresponds to the 8 gradations of slope ν′  = ν ± 8n, where n = 0, 1, 2, … Since the 
bar chart of such a group of numbers h(ν′) should be a periodic function, the algorithm of 
breaking up into lots is not applicable here in the form described above. The changes of 
algorithm that correspond to the third modification boil down mostly to the changes of 
step A, the construction of the bar chart. From the periodic bar chart h(ν′) we isolate a 
fragment of the length of period of minimal variance σ2 (Fig. 10). Then the second 
modification of the algorithm described above is applied to this fragment of the bar chart. 

 
Figure 9. Bar charts of the coordinates of the center of gravity of individual squares (parts 
of pictures) of Problem #27. The y-coordinates do not break up into lots; the x-coordinates 
break up into 3 lots. 
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Figure 10. Breaking up into lots of the slop of the figure’s longitudinal axes in Problem #5. 
The brackets above the “periodic bar chart” mark its different period — long fragment. The 
fragment with the minimal variance is chosen (the values of variances are shown near the 
brackets). The braces on the bottom mark the two lots into which the slope was broken up 
in the given problem. Analogously, for the group of numbers with the dimension 
orientation (see §3.6) we isolate a fragment of the periodic bar chart with a period of 360° 
that corresponds to the 16 gradations of orientation (direction). 

3.4.5. Threshold operator. Function and structure. A threshold operator transforms 
collections of numbers into collections of Boolean numbers. Let us look at an example. 
At the input of this operator we have a collection of numbers characterizing a certain set 
of pictures, for example, the results of work of the measuring operator area on this set of 
pictures. If it turns out that, according to this parameter, the figures on the given pictures 
evidently break up into big ones and small ones without any intermediate area values, this 
operator will calculate (with the help of the algorithm of breaking up into lots) the 
threshold area value. Then it will compare each area value to this threshold and in this 
way each picture will be put into correspondence with Boolean numbers which can be 
interpreted as truth values of the following statements: 1) “in the picture a small figure is 
represented” and 2) “in the picture a big figure is represented”. 

It can happen that a certain collection of numbers can be broken up into three or four lots, 
instead of only two as in the previous example. Then the algorithm of breaking up into 
lots will calculate several distinguishing thresholds and the input collection of numbers 
will be transformed into k collections of Boolean numbers (according to the number of 
lots). In each of these collections of Boolean numbers the ones will correspond only to 
those numbers that fell into the given lot. 

It can happen that the collection of numbers will be divisible into lots. In this case it is 
useful to try to break up into lots certain subsets of the numbers of this collection. As it 
was already said in Section 2, a subset of numbers NB of a given collection of numbers N 
can be defined by a certain collection of Boolean numbers B. It is natural to choose only 
those collections of Boolean numbers that are already stored in the machine’s memory. 
We will describe how this choice is made in Section 4. Here we must only say that, in 
addition, in the memory is always stored a collection of Boolean numbers containing only 
ones (see also §3.5.) and defining the entire subset. Breaking up the subset NB ⊂  N into 
lots means that we will only apply the algorithm of breaking up into lots on this subset 
and not on the entire collection of numbers; and re-code into Boolean numbers (in 
accordance with the thresholds found) only the numbers of this subset. 
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Thus in its general form the threshold operator has two inputs, into which one collection 
of numbers N and one collection B0 of Boolean numbers are inputted; as output, it can 
produce several collections of Boolean numbers (B1, B2, ... Bk) = H (N, B0). 

Let us write down the collections of Boolean numbers at the output of the threshold 
operator (for simplicity we will exclude the case when the input is a collection of 
numbers with the dimension of slope or orientation). Let t1, t2, …, tk–1 be threshold 
values, calculated with the help of the algorithm of breaking up into lots. 

Suppose t0 = 0, tk = 63. Then we can write: 



 =≤≤

= −

otherwise
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ji
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j = 1, 2, …, k. 

3.5. Operators of breaking up the pictures into fragments. 

3.5.1. Function. A special type of operators are operators that break the pictures up into 
fragments. These operators put each input picture into correspondence with several 
output picture-fragments. Use of operators of breaking up the pictures into fragments 
allows us to process individual parts of any picture, or parts of parts. As a result the 
program is able to describe classes of pictures, based both on their general characteristics 
and their small, local elements. 

The examples of work of two operators of this type, breaking up by connectedness (S) 
and breaking up by borders (J), are given on Fig. 1 and Fig. 12. In the Appendix on p. 72 
are given some problems for which such operations are necessary. In particular, the 
operator breaking up by connectedness is used to describe classification principles of the 
majority of problems. The other operator, breaking up by borders, is used to break up 
pictures in problems #13 and #39. Problem #15 is an example of a case where both 
operators make part of the description of the classification principle. 

On p. 78, examples of problems (#43, #44, #45) are given for which it is appropriate to 
introduce one more operator of this type: breaking up of lines by branching nodes. 

3.5.2. Main definitions. Measuring and drawing operators put into correspondence one 
object of the output collection with each individual object from the input collection. The 
threshold operator is not applicable to individual objects; nevertheless, the 
correspondence between objects of the input collection and the objects of each of the 
output collections of this operator is defined: ( ) ( )iii

k
ii bnHbbb 021 ,...,,, = . There is no such 

one-to-one correspondence between the input and the output in case of the operators 
breaking up into fragments. Indeed, such an operator divides each picture ip1  of the input 

collection P1 into several picture-fragments ijp2  ∈  P2; as a result, the output collection 
contains more pictures than did the input collection3. Since we can apply the same 
procedure to the picture-fragments as we did to the initial pictures (each picture-fragment 

                                                 
3 If it turns out that a certain operator breaking up into fragments “divides” each picture of the input 
collection into only one fragment, then we say that the given operator is not applicable to the given 
collection of pictures - see §3.5.3. 
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ijp2  ∈  P2 in its turn may be divided with the help of one more operator breaking into 

fragments into several fragments ijkp3  ∈  P3), it can be said that use of the operator 

breaking up into fragments produces objects of a different level. 

 
Figure 11. Three levels of pictures that result from successive application of the operators 
breaking up by connectedness and breaking up by borders to two pictures p1 and p2 of the 
first level. 

Let us define the level of objects. We will say that two collections belong to the same 
level if among the objects of the two collections there exists one-to-one correspondence. 
The levels of objects can differ by number. The collection of training pictures belongs to 
the objects of the first level. Application of one of the operators breaking up into 
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fragments to the collection of pictures of the first level produces a collection of pictures 
of the second level and so on (Fig. 11). 

Let us look at the interrelation of objects of different levels. Let ip1  be pictures of a 
certain collection P1 of the first level. Application of one of the operators breaking up 
into fragments to these pictures gives the collection of picture-fragments ijp2  ∈  P2 of the 

second level. Here the pictures ijp2  with variable values of the top index j and a fixed 

value of i are parts of the same picture ip1 . In other words, an operator breaking up into 
fragments defines the separation of the sum total of objects of the output collection of 
pictures P2. Application of the next operator breaking up into fragments to picture-
fragments ijp2  will yield a collection of pictures ijkp3  ∈  P3 of the third level. On these 

pictures there will already be two levels of division: pictures of the third level ijkp3  with 

variable indices k but with constant indices i and j are parts of the same picture ijp2  of the 
second level; while pictures with variable values of j and k and a constant value of i are 
parts of the same picture ip1  of the first level. Thus, the order of division into fragments 
defines the structure of breaking-up of a certain level. 

Let us recall that operators that transform objects inside one level (drawing, measuring, 
threshold) do not change the objects’ indices. They do not use the information about 
previous divisions for their work, which is coded in the indices. In subsequent sections 
we will describe operators that we will need, besides the objects themselves in input 
collections, the information about which fragments were received from which pictures (or 
parts of pictures). This information must be contained in the collection; therefore we must 
define the concept of “collection of objects” more precisely. 

A collection of training pictures is a collection of objects of the first level. A collection of 
objects of the m-th level is the sum total of objects that appears at the output of a certain 
operator as the result of the application of this operator to a collection of objects and for 
which the entire structure of m – 1 levels of divisions is defined. 

Further on, while speaking about interrelations of objects of different levels we shall not 
write down all the top indices for objects of different collections; instead we will indicate 
only the number of the level and those indices that are relevant for the given relations. 

3.5.3. Structure. A collection of pictures of a certain level is given as input to the 
operator breaking up into fragments. At the output, this operator produces the collection 
of pictures of the next level. In addition, the operator breaking up into fragments enters 
into memory a collection of Boolean numbers (of the same levels as the pictures at the 
output of the operator), consisting only of ones. Consequently, each operator breaking up 
into fragments has one input and two outputs (see the list on p. 8). 

The operator breaking up into fragments may not work on a certain collection of pictures, 
failing to produce objects of the next level. This happens in the following cases: a) the 
pictures do not break into fragments with the help of this operator, that is, the attempt 
produces only one fragment from each picture of the input collection; b) the total number 
of parts happens to be > 125; c) at least one of the pictures of the training collection 
contains > 62 parts. 
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The last two stipulations are made because 1) the size of collections is restricted in the 
program, and 2) only values from 0 to 62 are permitted for natural numbers and, in 
particular, for the number of fragments on each picture.  

The last restriction does not mean that a certain operator breaking up into fragments 
cannot divide pictures into more than 62 parts. It is necessary that the entire chain of 
successive divisions of a picture from the training collection give not more than 62 parts. 
It can happen, though, that each of the operators breaking up into fragments divides each 
of its input pictures into a smaller number of parts. 

Algorithm of breaking up by connectedness S. In the operator breaking up by 
connectedness the internal procedure S* is used — the isolation of one connected area S*p 
from the initial picture p. Multiple application of this procedure divides a picture into 
separate connected areas. The procedure S* consists of individual scans of a picture, 
during which all its columns are successively analyzed. Some elements of the picture are 
copied onto a separate area p1. Such scans can be repeated several times, moving first 
from left to right and then from right to left. 

Initially p1: = φ, p2: = p.  

1. Moving from left to right, we go over all the columns of picture p2 until we find 
the first non-empty column. 

2. In this non-empty column (first on the left), we find the highest black point. We 
add it to picture p1 and erase it from picture p2. 

3. In this column of picture p2 we find all the elements connected (in the sense 2) to 
picture p1. We add all these elements to picture p1 and erase them from picture p2. 

4. In case we still have not arrived to the edge of the picture and the next column of 
p1 ∪  p2 is not empty, we pass to the next column of picture p2 and return to step 3 
of the procedure. 

5. In the contrary case we reverse the direction of scanning the columns and, starting 
from the last column of the previous scanning session, return to step 3 of the 
procedure. 

6. The algorithm finishes its work if during a certain scanning in one direction not a 
single element was added to picture p1. As a result the connected area S*p 
(isolated from picture p) lies in p1, and the remainder p2 = p \ S*p. 

Algorithm of breaking up by borders J. Analogously to breaking up by connectedness, 
the algorithm of breaking up by borders uses an internal procedure J* — isolation of one 
part p1 = J*p from the initial picture p. By a repeated application of this procedure to the 
remainder p2 the next part of the picture is isolated. The procedure is repeated until all 
parts are isolated and p2 becomes empty (p2 = φ). 

Procedure J* is built with the help of the already described operations C, F, S*, as well as 
operation W1 — spreading of the picture. 

The spreading of the picture consists in the following: we add to the initial picture p 
elements that have at least one black point neighboring with p (in the sense 1). 
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The expressions for the isolated part of the picture p1 = J*p and the remainder p1 are the 
following: 

p1 = p ∩ W1 (S
* (Cp ∆ W1 (Fp \ Cp))); 

p2 = p ∩ W1 (p \ S* (Cp ∆ W1 (Fp \ Cp))). 

 
Figure 12. An example of work of the operator breaking up by borders J. 

Algorithm of breaking up of lines by branching nodes K. As internal procedures, the 
operator K uses the operation of breaking up lines by connectedness (S), the procedure of 
thinning lines (V), and the operation W2 — spreading of picture. The last operation differs 
from W1 which was used in the algorithm of breaking up by borders in that in W2 such 
elements are added to the initial picture that have at least one black point neighboring 
with p (in the sense 2). 

The steps of the algorithm. 

1. Apply the procedure of thinning of lines to the initial picture p: p1 = Vp. 

2. Erase all the node points (points having more than two neighbors — in the sense 
2) from picture p1 and draw them in p2. 

3. In picture p1 choose among all node-points (that is, points of figure W2p2 ∩ p1) the 
isolated points (those that do not have neighbors in the sense 2). Erase these 
points on p1 and add them to p2. 

4. For each connected area in p2 calculate the number of points neighboring with it 
in the in p1; if it is fewer than 3, erase this area from p2 and add it to picture p1. 

5. Break up picture p1 by connectedness and add to each of thus obtained pictures all 
the areas of picture p2 that are connected with it. 
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3.6. Operator comparison. 3.6.1. Function. There exist problems in which the 
distinguishing rule is formulated in a form of certain quite simple functions of continuous 
parameters. As concrete examples, let us look at problems #35 and #36. In #35 the 
classes differ by the “blackness” of figures in the pictures -- not by the total number of 
the black points, but rather by their average density. In order to define this density it is 
sufficient to calculate the number of black points in the picture (applying the measuring 
operator area directly to the picture), measure the area of the figure (by doing convex 
hull filling and then applying the operator area) and divide the first result by the second 
one. In this way the elementary operators such as area and convex hull filling allow us to 
single out the parameters relevant for constructing the distinguishing rule. Now we only 
have to calculate their ratio. In problem #36 we find an analogous situation. Here the 
program on a certain stage will build in each picture a region occupied by small points 
and measure its area. It will separately measure the area of the region bounded by lines 
(in §3.8 we will say which “complex operators” are needed for this; the solution of this 
problem will be analyzed in detail in §5.5). It can easily be seen that neither one nor the 
other parameter can be broken into lots; however, both of them are necessary for the 
description of the distinguishing rule. Indeed, in this problem the classes differ from one 
another in that in the pictures of one class the lines enclose bigger area that do the points, 
whereas for the pictures of the other class the contrary is true. It can be noticed that here 
the ratio of these two areas can be broken up into lots, and the pictures of each class will 
end up in their own lot. In another problem (#34) the comparison of the area of the figure 
(after the contour filling) with the area of its convex hull will allow us to distinguish 
figures with bigger and smaller concavity. Problems #37 and #41 require comparison of 
other parameters: slope, coordinates. It should be noticed that not any pair of parameters 
can become arguments of distinguishing rules. People never compare the slope with the 
length of lines, but the comparison of two elongated fragments of a picture allows us to 
define the angle between those fragments. 

Thus, the examples show that an operator is needed which would allow us to compare 
different collections of numbers of the same dimension and level. In principle, it could be 
possible to construct such an operator which on the basis of two input collections of 
numbers of the same dimension would construct a single output of numbers. This output 
would be stored in memory according to the general scheme; then the attempts of 
applying the threshold operator to this collection of numbers (or to certain subsets of this 
collection) using breaking up into lots would lead (or not) to the coding of this collection 
of numbers in Boolean numbers. Initially [5,6], the idea was to construct the operator 
difference1 precisely in this form. Of course, with such an approach we would need a lot 
of space to store all the collections of numbers coming out at the output of operator 
difference. However, this is not what is important here. As it has already been said, the 
main principle of the program consists in that all the collections of objects, kept in 
machine’s memory, are given as input to all the operators applied to the objects of the 
given type. This scheme of work makes it natural to input to operator difference its own 

                                                 
1 Indeed, it was proposed to introduce several such operators. Different variants of operators of this type 
were called difference I, ratio [5], difference II, difference III (or difference module ) [6]. To a certain 
extent, the names reflected the character of transformations performed by these operators. As it will be seen 
further, the single operator comparison, described in this section, is a generalization of the first three 
operators. 
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output collections kept in memory, in order to calculate difference of difference, etc. The 
possibility of such superposition of the operator difference will allow the program to 
easily construct quite complex functions of multiple variables. For instance, as shown by 
experiments, people as a rule are not able to formulate distinguishing rules in such terms. 
Consequently, distinguishing rules of this type should always be qualified as superstition. 
In order to avoid this, we should forbid the input of the collections of objects appearing at 
the output of the operator difference into the same operator. In other words, whereas it is 
useful to keep the initial collections of numbers in machine’s memory, since each one of 
them may be analyzed by various operators, collections–outputs of the operator 
difference should only be broken up into lots. This is why we eventually adapted the 
following scheme of work: 1) two input collections of numbers N1 and N2 of the same 
dimension are transformed into a certain intermediate collection of numbers which is not 
stored in memory, 2) a procedure analogous to the threshold operator should be 
immediately applied to this last collection — the collection (or its subset defined by a 
certain collection of Boolean numbers B0) is broken up into lots and coded by a 
collection of Boolean numbers B1, B2, ..., Bk. These collections of Boolean numbers are 
outputs of the operator and are stored in memory. Thus, the operator comparison must 
have three inputs N1, N2, B0 and up to four outputs B1, B2, ..., Bk: 

 

 (B1, B2, …, Bk) = R (N1, N2, B0). 

 

The character of comparison of the input collections of numbers should be defined by 
their dimension. Thus, for the natural numbers (outputs of the operator number of 
fragments, see §3.7) it is natural to calculate their difference; for the slopes, the 
difference of slopes should be calculated; for areas, lengths and sizes of axes, it is natural 
to calculate the ratio of the corresponding parameters (or, on the logarithmic scale, their 
difference). We should pay special attention to the case when the input collections of 
numbers are coordinates of centers of gravity. By applying the threshold operator we 
were trying to break up into lots independently the x-coordinates nx, and the y-coordinates 
ny; the comparison of solely x-coordinates or solely y-coordinates does not seem 
appropriate. Indeed, the comparison of coordinates (for example, the centers of gravity of 
two different figures in a picture) should make it possible to formulate a statement about 
the mutual orientation of these figures. Apparently such parameters as the distance 
between the centers of gravity and the direction from one of the centers of gravity to the 
other corresponds more to human perception than do the differences of solely x-
coordinates or solely y-coordinates. Consequently, we may conclude that in case of 
coordinates, the procedure of breaking up into lots by the operator comparison should 
have as coordinates not two collections of numbers, but rather two 2-dimensional vectors 
( )i

y
i
x nn 11 ,  and ( )i

y
i
x nn 22 ,  constructed out of the corresponding collections of numbers. 

Those vectors are first expressed as two intermediate collections of numbers — distance 
and direction — each one of which is then broken up into lots. 

The variant of the operator comparison introduced here is in fact a special case of a more 
universal operator. To illustrate the situation, let us look at the Problem #38. Here the 
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classes differ in that in the pictures of the class to the right the segments composing the 
elongated figure have a transversal orientation, whereas in the pictures to the left the 
corresponding orientation is longitudinal. It is easy to see that it is impossible to describe 
this distinguishing rule in terms of already existing operators (that is, to construct a 
complex operator from some elementary ones). Indeed, we can measure the slope of the 
figures (more precisely, the slope of the longitudinal axis of the convex hull of the 
pictures), and the separation of the pictures into fragments would allow us to measure the 
parameters (including the slope) of the individual segments. The difference of these 
slopes could give us the distinction — in the pictures of the left class it is 0° for all 
fragments, whereas in the pictures of the right class it equals 90°. However, the operator 
comparison described above is not applicable here. The collection of numbers 
characterizing the slope of the figures belongs to the first level, and the collection of 
numbers characterizing the slope of the segments, to the second level. It is obvious that in 
the general case we may have to compare the collections of numbers not necessarily of 
the contiguous levels, but of any pair with the numbers l and m (where l is smaller than or 
equal to m) in the sequence of levels. 

Thus it is necessary to expand the area of the applicability of the operator comparison so 
that it would allow us to compare collections of numbers of the same dimensionality but, 
in the general case, of different levels. For this it is enough to stipulate that for all 
fragments ij

mp  of picture i
lp  each of the numbers ij

mn  (characterizing these fragments) 

would be compared with the same number i
ln  (characterizing picture i

lp ). All the above 

considerations about how (depending on the dimension of the input collections of 
numbers) these comparisons are to be made, and in which form the results of the work of 
this operator are to be stored in memory, remain relevant also for the case when the 
collections of numbers belong to different levels. There exists only one exception. The 
collections of numbers belonging to different levels should not be compared in case they 
represent the outputs of the operator number of fragments (natural numbers). It turns out 
that no problem (easy for a person) can be constructed in which such an operation must 
be used in the description of the distinguishing rule. Moreover, there accumulates in the 
memory a large quantity of such collections of numbers and all sorts of combinations of 
such collections — a rich source of “superstitions”. 

 In the final form the operator comparison has three inputs — the collection of 
numbers Nl1 of the l-th level, the collection of numbers Nm2 of the m-th level (l is smaller 
than or equal to m) and the collection of Boolean numbers Bm0 of the m-th level and can 
form at the output (similarly to the threshold operator) several collections of Boolean 
numbers of the m-th level. 

 (Bm1 , Bm2 ,…, Bmk ) = R (Nl1, Nm2 , Bm0 ). 

3.6.2. Structure. The First Step. From the input collections of numbers Nl1 and Nm2 

( 2211 , m
ij
ml

i
l NnNn ∈∈ , l ≤ m) we form collections of numbers N1 and N2 

( 2211 , NnNn jj ∈∈ ) of the m-th level (which are not stored in memory but become 
arguments of the next step of the algorithm).  

In case l = m we suppose that ., 2211
j

m
jj

l
j nnnn == . 
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In case l < m the collection N1 is formed in the following way: i
l

ijj nnn 111 == , for all j 

corresponding to the given value of i. 

In case when the inputs are coordinates, both components of vectors are formed in the 
analogous way ( )j

y
j
x nn 11 ,  and ( )j

y
j
x nn 22 , . 

The Second Step. Two collections of numbers (or two vectors of coordinates) are 
transformed into an intermediate collection of numbers N3. The character of 
transformation of the input collections of numbers is defined by their dimensionality. 

a. Dimension — slope 

N3 is calculated by the formula 

=jn3
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The same dimensionality is ascribed to the N3 as to the input collections of numbers. 

b. Dimension — natural numbers, area, length, size of axes. 

First jd  = 62 + jn2  – jn1 . In principle, the range of changes of d (from 0 to 124) can be 
twice as big as permitted (0 - 62), even though it will rarely be the case in real problems. 
In order to “fit” these values of difference into the necessary range, the numbers of the 
intermediate collection are calculated by the formula 

=jn3
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where δ = (max{ jd } + min{ jd } – 62) / 2. 

The same dimensionality is ascribed to N3 as to the input collections of numbers. 

c. Dimension — coordinates. 

For all values of j for which fnnnn j
y

j
x

j
y

j
x ≠2211 ,,, , the values 

( ) ( ) ( )2

12
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2 j
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j
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x

j
x

j nnnnl −+−=  

are coded on the logarithmic scale analogously to the coding of the outputs of the 
measuring operator length of lines. For all the other values of j we suppose j

ln = f. We 

ascribe thus to the obtained intermediate collection of numbers Nl the dimension length. 

In order to calculate direction we use the formula 

( ) ( )j
x

j
x

j
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j
y nnnn 1212tan −−=ψ . 
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We distinguish among 16 gradations of direction (see Fig. 6). In case when at least one of 
the four numbers j

y
j
x

j
y

j
x nnnn 2211 ,,,  is equal to f, or the distance between the coordinates is 

small ( j
ln  ≤ 2) we suppose jnψ = f. 

We ascribe the intermediate collection of numbers Nψ the dimension direction . 

The Third Step. The intermediate collections of numbers (or some of their subsets defined 
by the input collection of Boolean numbers B0) are broken up into lots and coded by 
collections of Boolean numbers, analogously to the way it is done in case of the threshold 
operator. 

3.7. Operators of the logical block. 3.7.1. Preliminary observations. Breaking up of the 
pictures into lots is the only type of operators that form from the object of one level to 
collections of objects of next levels. Three of the four operators we shall now describe are 
doing the opposite: applied to the collections of objects of deeper levels (with a bigger 
number), they supply objects for the previous levels (Fig. 13). 

 
Figure 13. The scheme of transformation of objects of two consecutive levels. Rectangles 
— types of objects (P: pictures; N: numbers; B: Boolean numbers). Types of operators 
transforming one object into others are shown by arrows (D: drawing operators, M: 
measuring operators, S: separation of pictures into fragments, U: union, H: threshold 
operator, Q: number of fragments, L: logical operator). 

It must be noted that a single application of any of these operators to any collection of 
objects of the m-th level supplies the output collections not only to the m-1-th level but 
also to all the previous levels, from the 1-st level to the m-1-th level. We will not 
specifically mention this fact while describing the work of the operators; we will only 
describe the character of the output collections of objects of one of the previous levels (l 
< m); nevertheless, it should be remembered that there can be several such levels. 

3.7.2 Decision-making operator. The decision-making operator can be applied only to 
collections of Boolean numbers of the first level. The work of this operator consists only 
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in checking whether the given collection of Boolean numbers is distinguishing. If this is 
the case, then the number of this distinguishing collection of Boolean numbers of the first 
level is printed (see §4), the problem is considered solved and the machine stops working. 
This stop can be considered the output of this operator. 

It has to be noted that the information about breaking up into classes the pictures of the 
training collection is not used anywhere else in the program. All other operators are 
working with the sum total of objects of a collection as with a whole. 

3.7.3. Operator number of fragments. Function and structure. The pictures can differ 
by the number of fragments (Problems #12 and #13) or by the number of fragments of a 
special type (Problem #14). More complicated principles of classification, into which the 
number of parts enters as a significant parameter, are also possible (Problem #15). 

A subset of pictures characterized by a certain property is defined by the corresponding 
collection of Boolean numbers. That is why in order to calculate the number of fragments 
of a certain type this collection of Boolean numbers should be given as input to this 
operator. Consequently, the operator number of fragments Q has at the input a collection 
of Boolean numbers Bm characterizing those fragments and at the output, the collection of 
numbers of the previous level Nl = QBm. Table 1 illustrates the work of this operator. 

Table 1 

Outputs of logical operator 

Input 

Output of 
operator 
num. of 

fragments 
a b c d 

Output of 

operator union 

 

1 
1 
1 
1   

04 1 0 0 1 

 

 

0 

1 

0   

01 0 1 0 1 

 

 

0 

0  
 

00 0 1 1 0 

 

 

1 
0 
1 
0   

02 0 1 0 1 
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Let ,, l
i
lm

ij
m NnBb ∈∈  l < m, then the number i

ln  of the output collection of objects of the 

operator number of fragments is calculated by the formula ∑=
j

ij
m

i
l bn , where the 

summation is done for all j corresponding to the given value of i. 

We ascribe to the output collection of numbers the dimension natural numbers. 

3.7.4. Logical operator. Function and structure. To give the description of 
distinguishing rules based of the characteristics of fragments in the pictures, it is 
advisable to make use not only of the numerical functions of the collection of Boolean 
numbers describing the fragments (that is, counting the number of fragments), but also of 
some logical functions. Such functions may be useful for describing distinguishing rules 
in many problems. As typical examples, we can cite the classification principles in 
Problem #27 (“all the fragments of the pictures of the left class are situated in the middle 
of the raster”) and in the Problem #30 (“in the pictures of the left class there exists at least 
one small square”). 

Thus, logical operator is applied to collections of Boolean numbers characterizing 
fragments (number of level > 1) and supplies objects to the previous level. To each input 
collection, it puts into correspondence four output collections of Boolean numbers of the 
previous level, corresponding to the following four logical functions: a) to all fragments 
of the picture in the collection correspond ones, b) not to all fragments of the picture in 
the collection correspond ones, c) to all fragments of the picture in the collection 
correspond zeros, d) not to all fragments of the picture in the collection correspond zeros. 
An example of functioning of the logical operator is given in Table 1. 

Analogously to the operator number of fragments, the Boolean numbers ,,,, i
ld

i
lc

i
lb

i
la bbbb  

of the output collections of objects of logical operator are calculated by the formulae 
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i
la bbbbbbbb ∨∧∨∧ ====  

where the conjunction and disjunction are taken for all j corresponding to the given value 
of i. 

3.7.5. The operator union. Function and structure. Union performs an operation which 
is inverse to division into fragments — from a certain number of fragments of a picture 
the operator union forms a new picture. The output collection of objects of this operator 
belongs to the previous (in relation to the input one) level. The information about which 
fragments are to be unified comes in the form of a collection Bm of Boolean numbers 
characterizing the fragments to the second input of the operator union: Pl = U (Pm, Bm). 

An example of functioning of the operator union is given in the Table 1. 
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where the operation union is done for all j corresponding to the given value of i such that 
ij
mb  = 1. 

3.8. Complex operators. People are able to solve various problems of classification of 
geometric objects. The analysis shows that people often use the same terms to describe 
completely different objects. It may seem that such terms correspond to the most general 
(from the human point of view) characteristics of these objects. Consequently, for 
modeling human behavior it is sufficient to create special blocks, isolating these 
characteristics; after that it will be easy to build a system capable of classifying objects in 
“human” terms. It turns out, however, that the existing mathematical definitions of the 
corresponding concepts (such as angle, straight line, etc.) are not always applicable. 
Indeed, people often give the name of a ‘triangle’ to a figure whose sides are not straight 
and whose angles are rounded. Thus it is natural to try to find more general definitions. 

Similar attempts are characteristic for the linguistic approach to the problem of pattern 
recognition. Each picture is described in terms of the local characteristics (‘angles’, 
‘curves’, ‘nodes’, etc.), common for all figures and all problems [7]. Probably this 
attempt can prove successful in a limited domain, for example, in the problem of 
recognition of letters and written signs. Unfortunately, if we pass to a wider class of 
problems we will immediately be confronted with the following characteristic of human 
language: the same terms in different problems have different meaning (that is, one term 
characterizes different classes of objects). In other words, it is not the broadening of a 
term’s meaning that leads to its universality, but the possibility to put this term into a 
relationship with a concrete situation. 

In this sense, the example of the Problem #46 is significant; here the “human” principle 
of classification should sound something like this: “Pictures contain straight and curved 
line segments. To the left class belong the pictures where the curved line segments make 
a straight line.” It follows from this example that no matter which definition of the 
straight line we try to give, it will not be applicable to both the first and the second 
phrases of this classification. (Of course, we could leave the term ‘straight line’ only for 
the mathematical abstraction, and replace its “colloquial” usage by “stricter” expressions 
such as “point lying close to a straight line”. However this will not improve the situation, 
since now these expressions will take different meaning on different levels of the 
description of the distinguishing rule.) 

It seems that such vagueness of human language creates only confusion and 
inconvenience at the attempts of any kinds of formalization, in particular, in building the 
formal language of picture description. However, it is precisely this semantic vagueness 
of the terms of human language that leads to their universality. As a result, the same 
semantic constructions, whose structure is uniquely defined by the terms composing 
them, may be used to describe very different situations. 

If we attempt to introduce this characteristic of human language into the language of the 
program, we will arrive to the following requirement. The program must be able to form 
terms (operators) whose meaning would depend on the situation (that is, on the objects 
which are given as input to the operators). We will try to demonstrate that the proposed 
language of operators possesses, to a certain extent, the required flexibility. From 
elementary operators, the program can build complex operators whose behavior will be 
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defined by the concrete collection of input objects. The flexibility of this language is due 
mainly to the procedure of breaking up into lots. Let us see an example. There is no 
operator in the program that corresponds to the concept “big”. However, such an operator 
is constructed from the sequence of two operations: measuring of an area and then 
transformation of this area (with the help of the threshold operator) into Boolean 
numbers. Naturally, there are no a priori big or small figures; it all depends on a concrete 
situation. It is precisely the operation of breaking up into lots that takes into account the 
situation, while choosing the threshold separating the big areas from the small ones. 
Moreover, a concrete situation (when the area cannot be broken up into lots) may make 
the application of such terms meaningless. 

The program can indeed give different meanings even to such terms as “contour” and 
“convex”, which are defined, as it seems, by the strictly defined structure of the 
corresponding operators (we are talking about that part of the drawing operators which 
gives as output Boolean numbers corresponding to the statements “the input picture is a 
contour one”, etc.) Let us analyze this in more detail. The Boolean outputs of the drawing 
operators contour isolation and convex hull filling are strictly defined by the structure of 
these operators and do not depend on the situation, that is, on which collection of pictures 
is given as input to these operators. It seems that the terms “contour” and “convex” have 
a narrow sense which can change only if the structure of these drawing operators 
changes. However, in the program there exists a way around it. The program can replace 
these strict Boolean operators by the corresponding (and even more universal) complex 
operators. Of course, the drawing operators contour isolation and convex hull filling will 
be used here as components. However, in forming of a Boolean output, we will use not 
the strict scheme of comparison (whether the picture at the output of a drawing operator 
coincides with the input picture, or not), but the procedure of breaking up into lots. For 
example, it is possible to build a complex operator that would compare the areas of a 
figure and its convex hull (breaking up into lots the ratios of these areas with the help of 
the operator comparison). It is natural to say that the pictures for which this ratio is close 
to 1 are convex, and all the other pictures are concave. The boundary of such a division 
will, of course, depend on the situation: certain pictures will be perceived now convex 
and now concave in different situations. And if all the possible values of this ratio are 
found with an almost equal frequency, it means that this ratio cannot be broken up into 
lots: in the world where all the intermediate forms are possible there is no sense in 
dividing the figures into convex and concave. There exist situations in which the above-
described procedure of separating a picture into convex and concave figures will give the 
same result as will a strict Boolean operator. This result will mean that this operator 
turned out to be adequate to the collection of pictures it received as input. Analogously, 
we can build a complex operator for the term “contour”. 

Thus, in a strict Boolean operator the meaning of a term depends on the construction of 
the drawing operator and does not depend on the situation. In the corresponding complex 
operators there appears universality — a strong dependency on the situation. As a result, 
the work of these operators is not defined anymore (within certain limits) by the structure 
of elementary drawing operators making part of these complex operators. Consequently, 
the language of the program has the following characteristic: the terms in which objects 
are described are defined better by the sum total of these objects than by the elements of 
the language itself. 
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Now let us return to Problem #46 which we have analyzed earlier. Unfortunately, the 
present variant of the program loses much of its value because it lacks the point-by-point 
analysis of lines (in particular, it does not take into account the slope and the direction of 
the line in a point). However, the program is able to create a “definition” of a straight-line 
segment — distinguishing straight lines from curved ones — in terms of drawing 
operators it already possesses. A straight-line segment is a figure which at the same time 
is contour and convex.4 As we have seen, the program can build varied (defined by 
concrete circumstances) formulations for the concept contour as well as for the concept 
convex. Thus it is natural that on different levels of description of the distinguishing rule 
of Problem #46 the program is able to build different operators in accordance with those 
variations which people introduce into the meaning of the term “a straight line segment” 
(see the solution of Problem #46 on page 73). 

Another type of complex operators where the application of the procedure breaking up 
into lots makes the behavior of these operators to be dependent on a concrete situation is 
complex drawing operators. It may seem that a program containing only three elementary 
drawing operators (see Fig. 1) cannot provide a large variety of picture transformations 
(even taking into account all the possible superposition of these operators). Let us show 
in what way the program is able to build a special type of complex drawing operators via 
previous division of pictures into fragments. As a result of such division, isolation of a 
subset of fragments, all of which possess a certain characteristic, and subsequent putting 
of these fragments into a union, we obtain pictures on which some elements (those which 
do not possess this characteristic) are “erased”. The variety of such re-drawings is defined 
by the problem itself — it depends on the variety of the collections of Boolean numbers 
characterizing those fragments. Since these collections of Boolean numbers are supplied 
mostly by the threshold operator and the operator comparison, a modification of the 
problem (a modification of the sum total of pictures given as input to the complex 
drawing operator) may change considerably the character of this operator’s work. 

Let us look at some examples. 

In Problem #36 the fragments of pictures are of two types — points and lines (the length 
of lines is broken up into lots). Applying the operator union to the subset of points and to 
the subset of lines, we get at the output the pictures of the first level which can be 
interpreted as outputs of two complex drawing operators (Fig. 14). 

In Problem #8 breaking up of the pictures by connectedness, putting into union the 
contour (white) figures, and subsequent convex hull filling will produce at the output 
pictures in each of which one elongated (horizontally or vertically, depending on whether 
the input picture belonged to the left or the right class) figure will be represented. This 
complex drawing operator makes part of the description of the distinguishing rule in the 
given problem (see Fig. 19). 

In order to construct the distinguishing rule in Problem #45, we need a drawing operator 
that would eliminate the straight-line segments from the input pictures. Such an operator 
may be built by successive division of pictures into fragments by branching nodes, 
finding out with the help of the operator convex hull filling which of the fragments are 
                                                 
4 Another variant: a straight-line segment is a convex figure that has small thickness. 
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made of straight lines (convex) and which are made of curves (concave), and applying 
the operator union to the concave fragments. (Fig. 14). 

 
Figure 14. Examples of complex drawing operators 

 

4. Organization of searching 

4.1 A general scheme of searching. In solving each concrete problem the goal of the 
program is to build from some elementary operators a complex (distinguishing/dividing) 
operator which would put into correspondence to each picture of one class (from the 
collection of training pictures) the Boolean number 1, and to each picture of the other 
class, the Boolean number 0. It is clearly disadvantageous to directly generate complex 
operators one after another, checking whether each one of them is distinguishing/dividing 
for the given problem. It appears more natural to build them starting from “zero” in form 
of constantly growing chains of elementary operators, until the necessary 
distinguishing/dividing operator will be build. On the one side, such a process represents 
a branching search of ever longer chains of elementary operators. The generating 
procedure for this process is defined by the list of elementary operators and rules of their 
combination. On the other side, this process can be regarded as search among collections 
of objects obtained from the input collection of training pictures as a result of applying to 
it various complex operators. The goal of such searching is to find the distinguishing 
collection of Boolean numbers (see §2.1). 

If, for simplicity, we limit ourselves to the analysis of the operators that have one input 
and one output, then we can schematically represent the searching in the form of a graph 
whose vertices are collections of objects and whose arcs are various elementary 
operators. The collection of training pictures will be the primary vertex of this graph. It 



 42

has to be stressed that, by its structure, a graph is different from a tree; it is characterized 
by the number of cycles, that is, its vertices can be reached not by a single way, but by 
many ways. This trait suggests that the object of searching would be not the different 
paths in this graph (complex operators), but rather its vertices. Indeed, in the process of 
complete searching of vertices the program will eventually find at least one 
distinguishing rule, if it exists and can be described in the language of the given set of 
elementary operators. 

Consequently, our task boils down to building a scheme that would guarantee complete 
searching through all the collections of objects which can be build on the basis of the 
training collection, via all the possible superpositions of elementary operators. Let us 
analyze some possible approaches to this problem. One of them consists in reducing the 
graph of searching to a tree (for trees there exist simple schemes of searching). For this, 
in the process of searching we can provisionally say that each one of the ways that in 
reality cross at a common vertex ends at a separate vertex. In this way we would ignore 
the cycles. Unfortunately, such an approach is unacceptable not only because it can lead 
to an increase of the work time due to repetitions, but rather because it transforms our 
final graph into an infinite tree (since it contains closed contours). 

An alternative approach may consist in constructing, instead of the generation procedure 
for a finite list of elementary operators, a fixed (though, perhaps, somewhat cumbersome) 
universal scheme of search of the graph’s vertices and introducing this scheme into the 
program. However, in each concrete problem there appears to be a large number of 
equivalent (only in the given problem) complex operators — operators that give the same 
collections of numbers at the output. This leads to a considerable simplification of the 
graph. Examples of such simplification of graphs constructed from drawing operators are 
given in the next section. More explicit and varied examples can be found in §5.5, where 
we describe the behavior of the program working on problems. Consequently, it is 
desirable to introduce search without repetitions, corresponding to the reduced (in 
correspondence with the given problem) graph. 

For this there exists a method, which we are partly using in the described program. The 
method consists in the following: the subsequent collection of objects, corresponding to 
the subsequent vertex, is compared with all the collections stored in memory. If it is not 
new (a repeated passage by this vertex, while following another path), then it is not stored 
in memory; this way, the number of objects in memory grows only when we hit a new 
vertex. Such a searching scheme allows us to pass each arc of the graph only once. 

Such a procedure for storing new collections of objects in memory as a whole is used in 
the program for collections of Boolean numbers. It has to be noted that in case of using 
drawing operators and operators dividing into fragments such a procedure does not 
simplify the graph sufficiently; we will describe the methods of further reduction of 
searching in the next section. 

 

Reduction of searching of drawings. 4.2.1. Specific difficulties. It turns out that the 
above described scheme of searching cannot be used in case of operations on collections 
of pictures for the following reasons: 
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1. A very big memory is necessary to store of the collections of pictures, obtained in 
the process of solving the problem of searching5, 

2. Much time would be required to see whether the new collection of pictures 
coincides with any of the stored collections, 

3. Too much machine time is required to transform the pictures themselves 
(operations of redrawing and dividing into fragments). 

 
Figure 15. Graphs of possible transformations of collections of pictures with the help of 
four operators: contour isolation (G), contour filling (F), convex hull filling (T) and 
separation by connectedness (S). 

Let us clarify the last point by giving an example. Let us analyze the graph of searching 
which contains only four operators: contour isolation, contour filling, convex hull filling, 
and separation by connectedness (further in this section we will not distinguish between 
drawing operators and operators of division into fragments; for the sake of simplicity, we 
will call all of these operations drawings). The complete graph generated by these 
operators is shown on Fig. 15a. The initial vertex of this graph is the collection of training 
pictures. In total, the graph contains 21 vertices. Since four arcs go out from each vertex 
(Fig. 15 does not show loops — arcs whose beginning and end are in the same vertex), 
the total number of arcs equals 84. Thus, working by the general scheme, the program 
must store in memory collections of pictures corresponding to the vertices of the graph, 
apply to each of these collections all the operators, and, as a result, go along all the 84 
arcs of this graph. However, it is clear that in order to pass by all the vertices of this 
graph it is enough to travel only along 20 arcs. 

                                                 
5 The collections of objects, stored in memory, are used in two ways. First (and this is what interests us 
when we organize searching), the objects are stored in memory so that each new collection of objects could 
be compared to all the previous collections, to see whether it coincides with any of them; thus the described 
scheme of searching will be fulfilled. Secondly, collections of objects are necessary for feeding them as 
input into operators (see §4.3.2.) 
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As is was said in the previous section, the replacement of the general scheme of searching 
by a shorter, fixed searching scheme of the vertices of this graph (along certain 20 arcs, 
chosen a priori) is not acceptable. Since the form of the graph depends on the character 
of pictures of the training collection P0, it is necessary to give to the scheme of searching 
some flexibility — an ability to adapt to specific characteristics of each problem. Indeed, 
the graph of searching will be considerably simplified if, for example, it turns out that in 
a certain problem the pictures in the training collection do not contain “holes” FP0 = P0. 
The corresponding graph is shown on Fig. 15 b. A very simple graph is the outcome if, in 
the pictures of the training collection, contour (CP0 = P0) and at the same time convex 
(TP0 = P0) figures are given; this is the case, for example, in Problem #25 (see Appendix). 
Such a graph contains a single vertex, and no re-drawings can change the input collection 
of pictures. 

 It has to be noted that with the increase of the power of the machine the 
significance of these difficulties decreases. Indeed, searching through a large number of 
superfluous variants can be compensated by higher speed of the machine, and a larger 
memory capacity allows us to store and then compare all the intermediate results of 
calculations. This is, approximately, the situation of the block of the program that 
processes numerical data. All the operators of this block (see list B on page 37) work fast 
enough, and the processed material does not occupy much space in machine’s memory. 

4.2.2. Using operational model for reduction of searching. On one hand, the necessity 
of using a general scheme of searching, and on the other hand, the difficulties described 
above lead to the following requirement for the organization of the searching of 
drawings. In order to do the searching of the vertices of a graph of drawings, it is 
necessary (1) to store, instead of collections of pictures, some other (less cumbersome, 
allowing to compare pictures for finding the coinciding ones) objects (images of 
collections of pictures), (2) instead of slow drawing operators (which process collections 
of pictures), to use faster operations with images. 

In other words, in order to find a path in a graph of drawings by the general scheme, we 
propose, instead of collections of pictures P and operators D transforming the pictures, to 
use a certain operational model; namely, one such that there exist (1) a mapping of the 
collections of pictures onto the elements (images) Π  of the model P → Π, (2) a mapping 
of the operations D onto the operations ∆ of the model, such that the condition DP → ∆Π 
is always fulfilled. 

In the machine implementation the images of the model take up several digits of a single 
cell; the operations of the model contain a couple of commands. Thus this model, which 
has the same graph of transformations, allows us to do faster searching of the vertices by 
the general scheme. 

Let us give an example of using this model in the scheme of searching of drawings. Let 
us look at a single stage of the program’s work. A certain collection of pictures P is 
inputted into the operator D. Before performing the corresponding operation of 
redrawing, the image Π of this collection of pictures P and the corresponding operator 
∆ are taken from the memory. The transformation Π1 = ∆Π is done. The element Π1 is 
compared to all the images stored in memory. Two cases are possible. 
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1. Π1 coincides with one of the images in memory. This means that the application 
of operation D to the collection of pictures P will give a collection of pictures that 
has already been obtained in some other way. That is why the program does not 
lose time for the senseless application of the operator D to the collection of 
pictures P. 

2. If the image Π1 has not yet appeared before, then a) operation D is applied to the 
collection of pictures P and b) the image Π1 is stored in memory. 

The reader may easily see that such a scheme, applied to the graph in Fig. 15a, would 
indeed allow us to do a searching of all its vertices traveling only along 20 arcs and 
discarding the other 64 arcs after trying them on the model. 

From the above scheme of the model it can be seen that the graph of searching is defined 
by the initial image Π0 corresponding to the collection of training pictures P0. All the 
subsequent images Π of collections of pictures are obtained from Π0 by standard 
operations ∆. Since we cannot know beforehand what kind of problem the program will 
have to solve, we have programmed such a Π0 that would give the most complete graph 
of searching (Fig. 15a). It can be said that we have programmed the most general model 
of the outside world. In solving a concrete problem it can turn out that the graph defined 
by the initial image Π0 does not correspond to this problem. For example, the pictures in 
the training collection may not have “holes” (FP0 = P0), and the search would have to be 
done by a reduced graph (Fig. 15b). The program may find this out only experimentally, 
by applying the operator contour filling (F) to the collection of training pictures (P0). 
However, having seen that the collection of pictures obtained at the output of this 
operator coincides with the input collection, we can, on the basis of experimentally 
obtained information, change Π0 accordingly and, consequently, change the graph of 
searching/execution. Thus in the process of working the program is able to find out 
certain details about the concrete situation with which it is confronted. On the basis of 
these details it changes (complements) the model it has been given. 

Here we do not describe in detail the machine realization of the scheme, roughly 
described above, of using the model for reducing the search, since, on the one side, this 
realization embraced a specific (and not very large) set of drawing operators and 
operators of dividing into fragments and, on the other side, it has used a number of 
specific procedures, related to the particular features of the computer’s command system. 

4.3. Order of searching. 4.3.1. Searching of operator and searching of input 
collections. As it was already mentioned, a single step of program’s work consists in that 
one of the elementary operators processes one (or several, if it has several inputs) of the 
collections found in memory and then saves its output data. 

The question is, which of the operators should be applied at a given moment, and to 
which of the collections of objects they should be applied. In the program this choice is 
done in two steps. First, by the scheme described in §4.3.4, the program chooses the 
subsequent operator and puts it to work. This operator, in correspondence with the 
procedure described in §4.3.3, chooses from memory an input collection of objects and 
processes it. 
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4.3.2. Storing of objects in memory. Collections of objects are numbered in the same 
order in which they are saved. The numeration is done separately for each of the types of 
objects and for each of the levels. Not all the collections of Boolean numbers (the results 
of work of drawing operators, the threshold operator, the operator comparison, and the 
logical operator) are stored in memory. Trivial (containing only zeros) collections of 
Boolean numbers, as well as collections identical to the ones already kept in memory, are 
not stored. 

All the collections of numbers (obtained at the output of measuring operators and the 
operator number of fragments) are stored in memory. In general, such a rule of storing 
objects in memory may lead to creation of loops. Indeed, if in a certain system there 
exists an operator O and a collection of numbers N such that N = ON then this method of 
storing the operator O will fill the memory with identical collections of objects N. 
However, it can be shown that in our system of operators this cannot happen and, 
therefore, such a method of storing is acceptable. Moreover, it is useful, because the 
probability that there appears a collection of numbers completely identical (including the 
dimension) to one of the collections stored in memory is very small. Consequently, 
checking for identity would, on the average, take much more time than the possible cases 
of processing identical collections of numbers. 

To keep in memory all the collections of pictures is an impossible task. The only 
collection stored is that of training pictures; as for the other collections, only the method 
of obtaining them (in the form of a sequence of operators) is stored. If need arises, a 
collection of pictures is generated again from the collection of the training pictures. This 
allows us to get by using a small memory capacity, even though it considerably increases 
the working time of the program, especially for the problems where it is necessary to 
build many levels and many unions. 

4.3.3. Retrieving objects from memory. Let z0 be the total number of objects (of a certain 
type, on a certain level) and z the number of collections of objects already processed by 
the given operator. When the operator starts working, it takes out of memory the next z+1 
collection of objects, processes it, and stores in memory the output collections — if there 
are any. 

This general scheme requires a more precise definition, since 1) operators can extract 
objects from different levels and 2) some operators have several inputs, and this requires 
a more complicated organization of accounting for the already processed collections of 
numbers. 

If there exist not yet processed collections of objects on several levels at once, the 
operator takes the next collection from the top level (with the smallest index). The inputs 
of the operator, if there are more than one, are ordered. The input order corresponds to 
the order of their appearance in the corresponding column of the list of operators on page 
8. When such an operator receives the control, it recovers from memory not just a pair (or 
a triplet — according to the number of inputs) of collections of objects, but several such 
pairs. For one input of the operator, only one collection of objects gets extracted from 
memory (one of the two elements of such pairs); for other inputs the entire sequence of 
collections of objects gets extracted. Then the operator processes all these pairs and stores 
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in memory the collections obtained at the output. In this way, one step of operator’s work 
consists in processing all the pairs of collections of objects taken from memory. 

Let us look now at the rule of recovering from memory the input collections of objects 
for operators having more than one input. For simplicity let us suppose that we have an 
operator with two inputs (for example, the threshold operator) and z0´ is the total number 
of collections of numbers, z0´´ is the total number of collections of Boolean numbers in 
memory, and z´ and z´´ respectively are the quantities of “already processed” collections 
of numbers and of Boolean numbers. This situation is shown in Fig. 16 where the pairs of 
the input collections of objects are represented by outlined points. The pairs of collections 
already processed by the given operator are represented by black points. Two situations 
are possible: 1) if z´ < z0´, then for the first input the next (z´ + 1) collection of numbers is 
taken from memory, for the second input all the collections of Boolean numbers with the 
indices from 1 to z´´ are taken; 2) if z´ = z0´ and z´´ < z0´´, then for the first input all the 
collections of numbers from 1 to z´ are taken from memory and for the second input the 
next (z´´ + 1) collection of Boolean numbers is taken.  

 
Figure 16. The order of recovering from memory the pairs of collections of objects that go 
to the inputs of the operators with two inputs. 

This rule of choosing objects from memory can be illustrated by the following example. 
Let it be that in the situation shown in Fig. 16 the control is given over to the same 
(threshold) operator several times in a row. Then the first time this operator will recover 
from memory and subsequently process z´´ pairs of collections of objects (in Fig. 16 
these pairs occupy column 1). One element of all these pairs will be the same (z´ + 1) 
collection of numbers, and the other element will be one of the collections of Boolean 
numbers (from 1 to z´´). After this the threshold operator will increase the value of z´ by 
1. When the threshold operator will be in control next time, it will again process in one 
step z´´ pairs of input collections of objects (column 2 in Fig. 16). After the fourth 
application of the threshold operator (if meanwhile the quantity of collections of 
numbers in memory hasn’t increased and z0´ hasn’t changed) it turns out that z´ = z0´; 
consequently, if the threshold operator will be in control for the fifth time, it will process 
z0´ pairs (occupying line 5 in Fig. 16), etc. 
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4.3.4. The order of giving the control over to elementary operators. It is convenient to 
analyze the work of Block (I), which organizes construction of new levels (this block 
directs the work of the operator division into fragments) and Block (II), which directs the 
work of all other operators on the levels already built. 

The second block contains the operators which are applied only to pictures (list A on 
page 8) and the operators processing the collections of numbers and Boolean numbers 
(list B on page 8). The order of work of the operators of Block II is defined by the 
ordered list of operators (the general sequence of operators in lists A and B). At each step 
of its work the block gives the control to the first operator on the list that still has some 
unprocessed collections. The second block works until all the operators will have 
processed all the input collections of objects (including the new ones, constructed by the 
operators of this block). 

The first block controls the operators dividing the pictures into fragments. Like the 
operators of the second block, these operators take stock of the input collections of 
objects — collections of pictures they have already processed. 

If we don’t take into account unimportant details, it can be said that the entire search 
scheme of the program works according to the single, ordered list of operators (p. 8). In 
the beginning there exists only one unprocessed collection of objects — the collection of 
training pictures. According to the ordered list, the measuring operators are applied first. 
Their output collections of numbers are stored in memory. Then the first of the drawing 
operators starts working. As a result of its work, a new collection of pictures appears in 
memory; consequently, the control again passes over to the measuring operators, etc. 

There exist in the program the following restrictions on this general scheme of search: 1) 
the operator union is applied only to pictures obtained as a result of work of the operator 
division into fragments, and 2) the operator division into fragments is not applied to the 
pictures obtained as a result of union. 

The program finishes its work if 1) in the process of working of the second block, the 
decision making operator finds a collection of Boolean numbers of the first level, 
correctly dividing the pictures into classes or 2) the block of building new classes 
exhausts all the methods of obtaining new pictures, that is, the program did not find the 
distinguishing rule. 

Unfortunately, while creating an algorithm of searching of operations it was not always 
possible to guide ourselves only by the considerations of usefulness of this or that order 
of search. The small volume of operational memory of the machine imposes serious 
limitations on the organization of the searching of operations. For example, the order of 
search can be arbitrarily changed inside of each of the lists A and B, but it is not possible 
to transfer operators from one list to the other. Such an organization of searching results 
in that each operator from list B can be applied only after the completion of all the re-
drawings and measurements defined by list A. 

5. Experiments in training the system 

5.1. The machine implementation of the system. 5.1.1. The program. The present 
variant of the program has been created for the computers M-20 and БЭСМ–3M with a 
memory volume of 4000 words. The program takes up more than 3000 words. In the 
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process of creating the program an additional “memory block” of 4000 words was 
connected to the machine. In general, all the program’s work was done by one “block”, 
the second one being used only for work fields — the outputs of the operator union. 

Since the program contains mostly logical operations, the speed of the machine 
approached 40,000 operations per second. As shown by experiments, such a speed 
proved quite sufficient. The machine spent very little time on solving any of proposed 
problems (as compared to the typical calculation problems). However, the small volume 
of the operational memory of the machine was affecting considerably the totality of 
problems being solved. The restrictions were produced by the necessity of keeping in 
memory all the obtained collections of numbers and Boolean numbers. The total volume 
of memory used to keep these collections equaled 1000 words, and the maximal 
acceptable number of collections of numbers and, separately, of collections of Boolean 
numbers, was 128 on each level. 

Such an “overcrowding of memory” is possible mostly in those problems where the 
program (with the help of various operators of division into fragments) is able to build 
many levels of objects. In such cases, unions of different fragments of the pictures with 
the subsequent re-drawings and measurements created a large quantity of collections of 
numbers. In their turn, the logical operator and, especially, the operator comparison 
created too many collections of Boolean numbers. In order to avoid this, in solving the 
majority of the problems we used a simplified version of the system. In the corresponding 
list of elementary operators the following operators were omitted: separation by 
boundaries, separation of lines by branching nodes and comparison. Only for those 
problems where it was necessary for the description of the distinguishing rule, the 
corresponding operators were added to the abridged list. In this case, the solution process 
could be completed only for relatively simple problems. 

5.1.2. The training material. The pictures were first coded in the form of a 45 × 64 
binary matrix and put onto punched cards. From these a collection of training pictures — 
a problem — was composed. In addition to the pictures themselves ip0  ∈ P0 the following 

information was inputted: 1) the number of the problem, 2) the number of pictures in the 
problem, 3) two collections of Boolean numbers, defining the separation of the collection 
of training pictures into two classes. 

ib+ =


 ∈

casecontrarythein

classppictureif sti

,0

1,1 0  

ib− =


 ∈

casecontrarythein

classppictureif ndi

,0

2,1 0  

Since the same picture cannot belong simultaneously to both the first and the second 
classes, for the same i it cannot be at the same time that ib+  = 1 and ib−  = 1. However, 

such pictures ip0  are possible for which it is not indicated to which class they belong: 
ib+ = ib− = 0. 
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The majority of “interesting” problems can be formulated using a small number of 
pictures; thus most of the problems contained 4 + 4 pictures; sometimes the total number 
of pictures in the problems came up to 16. In the experiments with the system we used 
altogether 48 problems (see the Appendix). The problems are separated into two classes 
(the left and the right). The Appendix also contains answers — the description of classes 
or the principle of classification in “human” language. 

5.1.3. The process of searching for a solution. The task of the program was to find the 
distinguishing rule that would differentiate each picture of the left class from the picture 
of the right class. Since each distinguishing rule is a superposition of a certain number of 
elementary operators, and the work of each of the elementary operators can be quite 
concisely described in “natural human language”, a person can easily predict how the 
program would classify, according to this distinguishing rule, some new pictures not 
presented to it in the training. Thus, it is the behavior of the program while searching the 
distinguishing rule and not while being tested, which interests us. The variant of the 
program described here did not contain the block “test” and had as its single working 
mode the search for the distinguishing rule (“training”). 

For such a natural and relatively simple collection of elementary operators a person can 
also predict, to a certain extent, the behavior of the system in the training process. This is 
easy to do for simple problems characterized by a certain monotony of pictures and, 
correspondingly, by a small number of parameters. However, the experiments have 
shown that a large number of the possible search branches, which appear in solving more 
complicated problems, usually pass unnoticed. Moreover, some disparities between the 
behavior of the system and that of a person may be found only in experiments with the 
working program. 

In the process of searching for the solution the program prints out the record of training 
proceedings. For each new collection of objects appearing in memory its “family tree” is 
printed out. The program says with the help of which of the operators and from which of 
the input collections of objects the given collection has been obtained. When the decision 
operator finds on the first level a collection of Boolean numbers correctly dividing the 
pictures of the training collection into classes, the index-number of this dividing 
collection is printed out, and the machine stops. After this the record of proceedings 
allows us to find the sequence of operators defining the principle of classification. 

There exist two natural indicators characterizing the work of the program in solving a 
problem: 1) the solution time and 2) the number of intermediate results (the volume of 
memory used up at the moment of finding solution). The results of the work of the 
program containing a reduced number of elementary operators are shown in Table 2. For 
each problem are given: the solution time, the number of constructed levels, and the 
number of intermediate results; the quantities of collections of numbers and of collections 
of Boolean numbers are given separately. 
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Table 2 

Problem 
number 

Level Solution time 
Quantity of 
collections 
of numbers 

Quantity of 
collections of 
Boolean numbers 

General number 
of distinguishing 
rules 

1 1  15 sec 9 2 4 

2 1  20 sec 15 6 4 

3 2 1 min  37 20 8 

4 2 3 min 25 sec 102 65 4 

5 1  25 sec 21 16 9 

6 2  35 sec 31 6 4 

7 2  40 sec 31 14 4 

8 2 2 min  75 6 6 

9 2 3 min 30 sec 75 4 6 

10 1  35 sec 21 10 60 

11 2  50 sec 25 8 8 

12 2  45 sec 51 24 14 

16 3 4 min 15 sec 218 61 4 

17 2 1 min 50 sec 43 8 18 

18 2 2 min 15 sec 62 13 4 

19 2 3 min 55 sec 261 16 6 

20 2 4 min 25 sec 236 53 5 

21 2 3 min  140 26 5 

22 1  20 sec 21 8 2 

23 1  20 sec 15 2 2 

24 2 2 min 45 sec 83 12 2 

25 1  25 sec 9 6 1 

26 1  20 sec 21 8 2 

27 2  35 sec 37 9 24 

28 2 1 min 10 sec 43 37 6 

29 2 2 min 15 sec 69 12 8 

30 3 5 min 35 sec 327 73 2 

31 3 4 min 40 sec 179 49 4 

32 2 2 min 45 sec 89 14 2 

33 2 2 min 20 sec 57 10 2 
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5.2. The number of distinguishing rules in a problem. 5.2.1. Distinguishing rules 
chosen by the program. We call solution of a problem the distinguishing rule (among all 
possible ones) that is found first during an experiment. Distinguishing rules for each of 
the problems are described in §5.5. However, the solution itself does not yet give a 
complete characterization of the program’s work. It is interesting to know which different 
principles of classification the program can find for a concrete problem. In order to do 
that, we have conducted special experiments, in which the program, once the solution had 
been found, did not stop working but erased the corresponding collection of Boolean 
numbers and continued to look for the next one. It turned out that in many problems the 
program found not just one, but several — sometimes many — distinguishing rules. 

Table 2 shows the number of distinguishing rules found for each problem. Regrettably, 
the limited memory capacity did not always allow us to bring the experiment to the end, 
that is, to do a complete search for all the possibilities. Thus, for some problems we show 
only a certain lower bound of the complete number of distinguishing rules being chosen. 

Usually, for each problem there are many distinguishing rules formulated in the language 
of elementary operators. Naturally, most of them are superstitions, that is, are formulated 
only on the basis of the concrete training material but do not correspond to the 
distinguishing rules proposed for the given problem by a person. All the other 
distinguishing rules can be called synonyms, since they give identical divisions for the 
entire set of all the possible pictures of the given problem. 

5.2.2. Synonymous distinguishing rules. In most cases, problems have a certain 
symmetry of classes, so the program can formulate the description of each class 
separately. As a rule, distinguishing collections of Boolean numbers, corresponding to 
such synonymous principles of classification, appear simultaneously at different outputs 
of a certain operator (a drawing operator, logical operator, or, sometimes, threshold 
operator) and thus in the record of the solution the problems are situated next to each 
other. Hence, the first pair of distinguishing rules in Problem #1 results from applying the 
operator contour isolation, one of the Boolean outputs of which corresponds to the 
classification “the right class — contour pictures”, and the other, to the classification “the 
left class — non-contour pictures”. 

Often the presence of several distinguishing rules can be explained by the fact that the 
same characteristic, relevant for the distinguishing rule, can enter in its formulation in 
different ways. The most typical example is Problem #29. The important characteristic 
here is the position (x-coordinate) of an outside point. This coordinate is broken up into 
two lots: left points and right points. Each one of the two collections of Boolean numbers 
resulting from this break-up can enter into the formulation of the distinguishing rule. The 
application of the logical operator to the collection of Boolean numbers characterizing 
the left outside points gives the following classification principles: 

1. Left class: pictures having an isolated point on the left part of the raster, 

2. Right class: pictures not having an isolated point on the left part of the raster. 

The same collection of Boolean numbers makes it possible to construct another 
description of the distinguishing rule, using the operator number of fragments and the 
following separation by threshold. Indeed, the number of isolated points in the left part of 
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each picture is either 0 or 1 and therefore can be broken up into two lots. Hence two more 
classification principles: 

3. Right class: pictures in which the number of outside points on the left part of the 
raster equals 0, 

4. Left class: pictures in which the number of outside points on the left part of the 
raster equals 1. 

Analogously, four more distinguishing rules can be constructed, using another collection 
of Boolean numbers, characterizing the outside points on the right part of the raster. In 
this way, only the use of the x-coordinate of an isolated point gave us the whole cluster of 
eight distinguishing rules. A similar cluster of distinguishing rules (all of it or just some 
part) can be seen in many other problems. Such are, for example problems #3, #4, #17, 
#31. 

5.2.3. Superstitions. One of the causes of superstitions — distinguishing rules that are 
unnatural from the human point of view — is the possible discrepancy between the 
language of elementary operators and the language used in such cases by people. In the 
commentaries to Problems #23, #24, and #28 we discuss the entire class of distinguishing 
rules that can be considered superstitions. They appeared due to a certain inadequacy of 
the language of elementary operators we have chosen. The second cause consists in that 
any sufficiently rich language in principle admits the construction of a large number of 
too complicated distinguishing rules. 

What does the program do against this variety of distinguishing rules? 

First, as it has already been mentioned, the majority of the distinguishing rules that are 
superstitions are eliminated thanks to the procedure of breaking up into lots during the 
selection of thresholds. 

Secondly, thanks to the special characteristics of the storing procedure, the program 
eliminates the superfluous branches of search and thus reduces the number of 
distinguishing rules being generated. The collection of Boolean numbers obtained for the 
second time — and thus in a more complicated way — is not stored in memory and 
therefore the correspondent complicated distinguishing rule is not constructed. 
Analogously, thanks to the organization of search of re-drawings and breaking up into 
fragments (see §4.2), only the shortest of all possible descriptions of distinguishing rules 
are chosen. 

Let us analyze, for example, Problem #1. The simplest distinguishing rule here consists 
of a single operator, that of contour isolation. The Boolean outputs of this operator 
correspond to the statement “to the right class belong the contour pictures, to the left 
class, the non-contour ones”. The program chooses this distinguishing rule for Problem 
#1. However, another — more complicated — operator also corresponds to this training 
collection: first fill the contour (this will not change the pictures of the training 
collection) and then apply the operator contour isolation. One more variant of a more 
complicated principle of classification, “to the right class belong the pictures all of whose 
parts are contour” (first break the pictures up by connectedness, then isolate contour of 
the obtained fragments and apply the decision making operator to any of the Boolean 
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outputs. Even though both rules satisfy the condition of Problem #1, the program does 
not construct them since they contain superfluous operations. 

In the problems that were given to the program (See Appendix and Section 5.5), the 
superstitions were never first to be formed, but the possibility of their appearance (in 
some problems) cannot be excluded. As a rule, in simple problems with a small number 
of parameters stored in memory, superstitions are impossible simply because there is not 
enough material to construct them. Such are Problems #1, #8, #25, #27. However, in 
problems with a large number of irrelevant parameters superstitions can be built. Usually, 
as it has been said, they appear at the later stages of searching for a solution. As an 
example of a superstition we will give here the description of one of such distinguishing 
rules. In Problem #28 the classes differ by the position (x-coordinate) of the white figures 
in the picture. The program first divides the pictures into fragments. The application of 
the operator contour isolation distinguishes between contour and not-contour fragments, 
and the application of the operator contour filling separates the fragments into full and 
empty (notice that in this problem the contour fragments are not necessarily empty and 
the empty fragments are not necessarily contour). The breaking up into lots of the x-
coordinates of only the contour fragments results in the following classification 
principles: 

1. To the right class belong the pictures that have a contour part on the right; 

2. To the left class belong the pictures that do not have a contour part on the right. 

Analogously, two more distinguishing rules can be obtained by breaking up into lots the 
x-coordinates of the subset of empty fragments (defined by the Boolean output of the 
drawing operator contour filling). 

 
Figure 17. Union of the contour fragments of Problem #28. 

Superstitions appear later. After the application of the operator union to the subset of 
contour fragments the pictures of training collection turn into the collection of pictures 
shown on Fig. 17. It has to be noted that the x-coordinates of these pictures cannot be 
broken up into lots. Apparently the center of gravity of the bottom right picture of Fig. 17 
lies somewhere in the middle between the two lots and hinders the break-up. However, if 
we apply to these pictures the operator contour filling, the center of gravity of this picture 
moves to the left. The x-coordinate of such filled pictures breaks up into two lots. All four 
pictures of the left class come into one lot, while the pictures of the right class come into 
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the other lot. It can be said that such a cumbersome distinguishing rule coincides, to a 
certain extent, with the true principle of classification. However, people probably would 
not formulate the distinguishing rule of Problem #28 in such a complicated way. 
Therefore it must be called a superstition. 

5.3. Effect of expanding the training collection. What does such expanding lead to? 

Two cases are possible here. The first case is when the added pictures contradict the 
classification principle found for the first problem. Then, naturally, the program will find 
some new principle of classification. It will, of course, satisfy also the initial problem, 
but, in the absence of additional pictures, the choice of a more cumbersome classification 
principle would be excluded. The sequence of Problems #1, #2, #3 illustrates this case. 

The other case is when the new material does not contradict the classification principle 
found in the first problem. It may seem that such an expansion of training material is 
senseless because it apparently only makes the training time longer, as more pictures 
have to be processed. However, as we have already remarked, the scheme of picture 
processing is not a fixed one but depends on the material given to the program. The time 
of solving a given problem is defined not only by the size of the training collection and 
the complexity of the distinguishing rule, but also by the number of dead-end branches of 
searching that the program has to go through before finding this rule. Such dead-end 
branches may appear in the problem for example, when some superfluous parameters get 
broken up into lots. Such an accidental break-up into lots may not yet lead to 
superstitions (provided it is not used in constructing the distinguishing rule), but the 
search of all the consequences of such a break-up will take some time. 

The existence of such superfluous break-ups into lots tells us that the choice of training 
material has not been altogether successful. A change of training material (in particular, 
its expansion) can make these spontaneous break-ups into lots disappear, and the dead-
end branches will be eliminated much earlier. This will reduce the search, and in some 
cases the time saved from such a reduction may even compensate the time spent on 
processing the additional pictures. For example, in Problem #21 the 1.5 times increase of 
the training material in comparison with the Problem #20 reduces the training time 
approximately 1.5 times. It can be said that the additional training material makes it 
easier for the program to find the solution. Other examples of speeding up the solution 
process as a result of increasing the training material are the pairs of Problems #32–33, 
and #47–48. 

5.4. Training with the use of test material. In the training regimen the program was 
given a collection of pictures divided into two classes, and it had to find a classification 
principle satisfying this division. The program did not have the test regimen, that is, the 
classification, on the basis of the already chosen distinguishing rule, of new (test) pictures 
as belonging to one of the classes. However, to a certain extent the test could be 
conducted during training sessions. For this, the collection of training pictures had to 
contain not only examples of pictures of each class, but also test pictures. 

As mentioned in §5.1, the information about which picture belongs to which class was 
recorded in special information cells of the training collection. If the training collection 
also contained test pictures, the machine simply was not told to which class each of them 
belonged. Therefore, while choosing the distinguishing rule (with the help of decision 
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making operator), the program paid attention only to examples of pictures of each class. 
Of course, this does not mean that the addition of test pictures did not affect the training 
process. The test material could contain information, relevant for constructing the 
distinguishing rule. Such a possibility of extracting information from the test material 
was analyzed already in M Bongard’s book [5]. 

In the simplest case such addition of test material may not affect the training process and 
thus not differ from a separately conducted test. In the collection of Boolean numbers 
obtained as a result of training, 1 will correspond to each picture of one class, and 0, to 
each pictures of the other class. The values put in this collection into correspondence to 
the test pictures will say to us into which class the program put each one of these pictures. 
Here such an experiment doesn’t give anything except a simple corroboration of the fact 
that the application of elementary operators in order corresponding to the chosen 
distinguishing rule indeed allows us to classify the test pictures. (See the solution of 
Problem #24 in §5.5) 

Problem #44 differs from Problem #43 by four additional test pictures. As a result of 
training on this problem the program chose the same distinguishing rule as in Problem 
#43. Two test pictures on the left are said to belong to the left class, two pictures on the 
right, to the right class. The training time increased in correspondence with the increase 
of the training material. 

In solving Problem #8 the program broke into lots the number of fragments in the picture: 
it can equally be 6 or 7. This parameter turned out to be irrelevant for the distinguishing 
rule. The addition of six test pictures to this problem (Problem #39) showed that there 
exist pictures for which the number of fragments is different from 6 and 7. Thus in 
solving Problem #9 the program does not break up into lots the number of fragments 
anymore and, as the Table shows, the stored Boolean numbers in this case are fewer than 
in Problem #8. In this example the break-up into lots of a superfluous parameter (number 
of fragments) practically did not affect the ensuing search. Therefore, the information, 
extracted from the test material in Problem #9, which has permitted the elimination of the 
irrelevant parameter, did not influence the working time of the program: the increase of 
training time in Problem #9 approximately corresponds to the increase of the input 
collection of pictures. Of course, the addition of training material (see §5.3) can 
sometimes speed up the search and so facilitate the finding of the solution. 

The clearest example of extracting information from the test material is given by the 
problems in which the training material is so small that it is difficult to choose a single 
classification principle from many principles of similar degree of complexity. In what do 
the pictures in Fig. 18 differ? We can say that the pictures differ by the number of 
figures, or their size, or that the figures in the picture on the right are spread across a 
larger area in comparison with the picture on the left, etc. Which of these classification 
principles shall we choose? The solution can depend on the kind of pictures we are to 
classify on the test. If in the test there is a wide spectrum of sizes (and quantity) of the 
individual parts of the image, but the pictures differ clearly by the size of the area 
occupied by the image (see Problem #10), then it will be the area of the figure obtained as 
a result of applying the operator convex hull to each of the pictures that will be broken up 
into lots during the training. In such case it is precisely this type of classification that will 
be chosen as the distinguishing rule. 
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Figure 18. Two training pictures. 

If we choose different material for the test, with the same examples of pictures of each 
class (see Problems #11 and #12), then the program will choose other distinguishing 
rules. 

5.5. Commentaries to the problems. Problem #1. The capacity of the drawing operator to 
give at the output not only collections of pictures, but also collections of Boolean 
numbers gives us the possibility to build distinguishing rules (based on such 
characteristics as “contour”, “convex”, etc.) also without applying measuring operators 
and the threshold operator. 

Problem #1. is the simplest of all problems given to the program. Application of the 
operator contour isolation gives at the output, in addition to contour pictures, also two 
collections of Boolean numbers which define, correspondingly, the subsets of “contour” 
(segments of straight lines) and “non-contour” (ellipses) pictures. The decision-making 
operator finds out that the very first one of these collections of Boolean numbers 
correctly divides the pictures into classes. Such is the principle of classification. 
However, the program spent much more time searching for it, than if would have spent 
simply processing in this way the eight pictures. As we noted in §4, the sequence of 
execution of operations in the program (defined by the order of operators in the lists A 
and B on p. 37) is such that the program proceeds with re-drawings only after having 
completed all the measurements of pictures; and after having measured all the pictures 
obtained as a result of all re-drawings, the program will, finally, address the decision 
making operator which will find the distinguishing collection of Boolean numbers. It is 
on these useless re-drawings and measurements that the program spends most of the time. 

Problem #2. We have added two contour ellipses to the pictures of the left class, so that 
these classes will not be distinguishable by the characteristic “contour” – “non-contour”. 
The distinguishing rule, found by the program, is defined by the sequence of operators: 1) 
contour filling, 2) apply the operator contour isolation to the output. The Boolean 
numbers at the output of this operator divide the pictures into classes. These Boolean 
numbers can be interpreted as the truth values of the statement “in the picture a figure is 
shown that stays contour even after the contour filling”. 

Problem #3. Further complication of the same classification principle. Here the program 
passes to process the individual parts of the image, since the general (integral) 
characteristics of pictures give no solution. In order to build the distinguishing rule the 
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program has to divide the pictures into fragments by connectedness and then apply to the 
obtained fragments the same sequence of operations as in Problem #2. 

After this, the logical operator, being applied to the collection of Boolean numbers 
characterizing the straight-line segments, builds on the first level a collection of Boolean 
numbers corresponding to the statement “in the pictures of the first class there exists at 
least one part that stays contour even after contour filling”. 

The resulting distinguishing rule is the following: divide the input picture by 
connectedness, then apply the operator contour filling to the pictures-fragments obtained 
by the previous operation; if, as a result of the last operation, there has been obtained at 
least one contour picture-fragment then the input picture belongs to the right class. 

Problem #4. Unlike in the previous problem, here even the pictures of the left class can 
contain the right line segments. The preliminary contour filling reduces this problem to 
the previous one. The distinguishing rule still does not use measurements and looks like 
this: apply to the input picture the operator contour filling and divide the result by 
connectedness; if as a result of the last operation there has been obtained at least one 
contour picture-fragment, then the input picture belongs to the right class. 

Problem #5. This is the simplest variant of the problem in which the distinguishing rule 
uses measurements with the subsequent cutting by threshold. In this problem the slope of 
the figures (Fig. 10) is broken up into lots. The solution of this problem requires a bit 
more time than that of Problem #2, which also contains 12 pictures, because the re-
drawings and measurements of such pictures take up more time. 

Problem #6. In this problem it is the thickness (the size of the small axis) that is broken 
up into lots. In order to find this out the program must first divide the pictures into parts 
and measure the thickness of each of the fragments. Then application of threshold 
operator gives at the output two collections of Boolean numbers defining the subsets of 
“thin” and “thick” parts. After this, application of the logical operator to the first of these 
subsets gives on the first level the distinguishing collection of Boolean numbers 
corresponding to the statement “in each picture of the left class there exists a thin part”. 

Problem #7. This problem differs from the previous one not only in that there is another 
parameter in the distinguishing rule — not the thickness but the length (the size of the big 
axis) of the figure — but also in that here an intermediate re-drawing is necessary. The 
program measures and breaks into lots the size of the axes after applying operator 
contour filling to the parts of the pictures. 

Problem #8. An example of using the operator union. A part of the searching tree that the 
program follows while looking for the distinguishing rule is shown in Fig. 19. The 
program first divides the pictures into fragments, then unites separately the black and the 
white parts, applies various re-drawings to them (in particular, convex hull filling) and 
finds out that the slope of the convex hull over the union of the white (contour) figures 
can be broken up into two lots corresponding to the vertical and horizontal orientation. 
The resulting collection of Boolean numbers gives us the distinguishing rule. The 
solution time here is somewhat prolonged because the program first makes an 
unsuccessful move — tries to unite the non-contour (black) figures. 
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Figure 19. The process of finding a solution for Problem #8. 

Problem #9. Training with the use of test material.  

The distinguishing rule is the same as in Problem #8: to divide the input picture by 
connectedness; apply to the picture-fragments the operator contour isolation, one of the 
Boolean outputs of which defines the subset of the contour parts of the picture; to the 
subset of the contour fragments apply the operator union and measure the slope of the 
figure obtained; if it is oriented horizontally, the picture belongs to the right class; in the 
contrary case it belongs to the left class. 

In correspondence with this rule the program put in each class three pictures of the test 
material. 

Problem #10. Training on the test material. 

Since in the test material there exists only one example of picture of each class we can 
regard as the distinguishing collection any collection of Boolean numbers in which 1 will 
correspond to a picture of one class and 0 to a picture of the other class, no matter what 
values this collection of Boolean numbers will take in other pictures. The first collection 
of distinguishing Boolean numbers was obtained as a result of the following sequence of 
operations: operator convex hull filling was applied to the pictures and the area of the 
convex hull was measured; the last parameter was broken up into two lots. The picture of 
the left class got into one lot, the picture of the right class, into the other. 
Correspondingly, the test pictures were grouped into classes according to whether the 
area occupied by the image is small (left halt of the test material) or big.  

Problem #11. Training on the test material.  

The program found the collection of Boolean numbers distinguishing the picture of the 
left class from that of the right class only after it had divided the pictures by 
connectedness. The area of fragments was broken up into two lots and the logical 
operator (using the collection of Boolean numbers corresponding to the small fragments) 
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supplied four collections of Boolean numbers to the first level at once. These correspond 
to the statements: a) “all the fragments in the picture are small,” b) “not all the fragments 
in the picture are small,” c) “there is no small fragment in the picture,” d) “there is a 
small fragment in the picture.” After this, the decision-making operator finds out that all 
these collections of Boolean numbers are distinguishing. 

It has to be noted that, in correspondence with these classification principles, the bottom 
left picture of the test material falls sometimes into the right and sometimes into the left 
class. Thus it can be said that the program is not able to unequivocally decide to which 
class this picture belongs — and neither are people. 

Problem # 12. Training on the test material. 

The distinguishing rule: divide the input picture by connectedness, then count the number 
of fragments. The picture belongs to the left class if it contains three fragments. 

Problem # 13. The distinguishing rule: divide the input pictures by boundaries, then 
count the number of fragments. Pictures belong to the left class if they contain three 
fragments; otherwise they belong to the right class. 

Problem # 14. Unlike in the previous problem, here we must divide the pictures by both 
connectedness and boundaries. Application of the operator contour isolation to the 
obtained fragments will reveal subsets (Boolean outputs of this operator) of white and 
black rectangles. Subsequent application of the operator number of fragments to the 
collection of Boolean numbers corresponding to the black rectangles gives us the 
collection of numbers on the first level. This collection is broken up into two lots — the 
number of black fragments may equal 1 or 3. This is why application of threshold 
operator to this collection of numbers gives at the output two collections of Boolean 
numbers, each one of which is distinguishing. 

Problem # 15. This problem is somewhat more complicated. What is relevant for the 
distinguishing rule here is not the total number of black rectangles in the picture, but their 
number in the individual fragments obtained via division by connectedness. Application 
of the operator number of fragments to the collection of Boolean numbers of the third 
level, characterizing the black rectangles, gives on the second level a collection of 
numbers which is broken up into three lots — the number of black rectangles in each 
fragment of the picture may equal 0, 1, or 2. After this, application of the logical operator 
to the collection of Boolean numbers corresponding to the third lot will give on the first 
level two collections of Boolean numbers, corresponding to the statements “in the picture 
there exists a fragment which contains two black rectangles” and “in the picture there 
doesn’t exist a fragment which contains two black rectangles.” Both of these collections 
of Boolean numbers will be distinguishing. 

Problem # 16. The distinguishing rule: divide the pictures by connectedness; apply the 
operator contour isolation to the obtained fragments; divide the result into fragments by 
connectedness; if at least one picture will be divided into parts (more than one), then the 
picture belongs to the left class. 

Problem # 17. This problem would have been very simple and would have been solved in 
a few seconds if it weren’t for the small-point “noise.” In order to get rid of it, we have to 
divide the pictures into fragments. Almost two minutes of machine time is spent on 
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different re-drawings and measurements of more than a hundred of pictures-fragments, 
which depict mostly just one black point. As a result the program finds the distinguishing 
rule in the form of the following chain of operators: divide the input picture by 
connectedness, apply to the pictures-fragments (obtained as a result of the previous 
operation) the operator contour filling; if as a result of the previous operation we get at 
least one concave picture-fragment then the input picture belongs to the left class. 

It may seem that such a division into fragments by the general scheme is not the most 
efficient method of fighting the “noise.” Application of some regular method of getting 
rid of small points would eliminate the meaningless re-drawings and measurements and 
considerably shorten the solution time. In reality, however, the long time of training is 
not a result of shortcomings in the program’s construction, but the price we had to pay for 
its universality. Thanks to this trait the program can solve, in particular, such problems 
where it is precisely the small points that are relevant for the distinguishing rule. It is not 
possible to tell beforehand which detail of the image is “noise”, that is, irrelevant for 
classification. This situation is illustrated by the following problem. 

Problem # 18. The same collection of pictures as in Problem #17. After the division of 
pictures into fragments, the operator union is applied to continuous (non-contour? 
connected?) fragments (the subsets of continuous fragments are defined by the collection 
of Boolean numbers appearing at the output of the operator contour filling), that is, 
individual small points. As a result we obtain the same pictures, but without big contour 
figures. Applying to them the operator convex hull gives us massive elongated figures. 
Then successive application of the operator slope of the figure and threshold operator 
gives two collections of Boolean numbers defining separately the subsets of pictures with 
the figures, elongated approximately horizontally, and the figures, elongated in the 
vertical direction. 

Problem # 19 In order to find out that in the pictures of the right class the small points are 
situated outside the closed lines, the program must first apply to each picture the operator 
contour filling. As a result all the internal points will merge with the background of the 
filling. Then it is necessary to divide the obtained pictures into fragments and isolate the 
subset of small points (the points left after contour filling, unlike all the other parts of the 
pictures, are “contour figures”). Finally, application of the logical operator to the 
collection of Boolean numbers characterizing these points gives us the distinguishing 
collection of Boolean numbers on the first level. 

The solution is the same distinguishing rule as in Problem #4. 

Problem # 20 Just as in Problems #4 and #19, here all the internal parts of the pictures 
only serve to “distract attention”. The classification of the picture is attained by contour 
filling, division of the obtained picture into fragments and measurement of the area of 
these fragments (which in the training material is broken up into two lots). Any picture, 
which, after contour filling, contains at least one small compound fragment, belongs to 
the left class. 

The search for distinguishing rules is done in such a way (see §4) that in this problem the 
program spends much time analyzing the “diversion” details of the pictures. First the 
program builds the second level — divides the pictures into fragments. Then, after 
isolating the contour, it constructs the third level via repeated division by connectedness. 
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Here it turns out that the fragments break up into three lots by their size. The smallest 
parts in their turn break up into vertical and horizontal. All these characteristics are 
irrelevant for the division. However, their processing and the application of the operation 
union to the obtained subsets of fragments takes much time. Only after this the program 
finally starts checking that branch of the searching which leads to the distinguishing rule: 
first it fills the contour and then divides the obtained pictures into fragments. 

Problem # 21. Four supplementary pictures were added to the training collection in order 
to get rid of the multitude of irrelevant characteristics of pictures — at least partially. 
Because of the size-variations of the inner fragments of pictures, the breaking up by this 
parameter does not happen anymore. As a result the solution was arrived at quicker, the 
increase of the number of pictures in the training collection notwithstanding. 

Problem # 22. Measurement of the length of lines and the subsequent separation by 
threshold (whose value is chosen by the procedure of breaking up into lots) divide the 
pictures of the training collection into classes. 

Problem # 23. In the program the measuring operator length of lines may be applied to 
any contour pictures. Consequently, in principle there may be quite long distinguishing 
rules, ending by contour isolation, measurement of its length and separation of this length 
by threshold. At first sight such distinguishing rules seem quite natural. However, the 
experiments have shown that at this point there is a certain discrepancy between the 
behavior of the program and that of a person. On the one side, the program notices 
differences in the length of the contour much more often. On the other side, even quite 
simple problems requiring measurement of the contour length are difficult for a person 
(people prefer to formulate distinguishing rules in other terms). 

In the given problem the length of the contour of figures was broken up into two lots. The 
pictures of one class ended up in one lot, the pictures of the other class, in the other lot. 
This distinguishing rule, consisting of three successive operations (contour isolation, 
measurement of the length, and separation by threshold), is not more difficult than the 
distinguishing rule, for example, in Problems #6 and #7. Yet for people these two 
problems present considerably less difficulty. 

Problem # 24. Training on the test material. 

This is an example of use of the operator length of lines in a more complicated problem. 
To find the solution it is necessary to first get rid of the small-point noise, analogously to 
the way it was done in Problem #17. Then we must perform convex hull filling on the 
remaining image, isolate the contour, and measure its length. In correspondence with this 
distinguishing rule the program attributes the two pictures on the left of the test material 
to the left class, and the two pictures on the right of the test material, to the right class. 

Solving this problem, people usually also classify the test pictures, even though they feel 
a difficulty in formulating the distinguishing rule — at least they never formulate it in 
terms of the contour length of the convex hull. 

Problem #25. In this problem, as a result of successive break-ups into lots of subsets of 
certain collections of numbers, the program finds the distinguishing rule, which is a 
function of three variables.  
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First the length of lines is broken up into two lots. Then the slope of the subset of short 
lines is broken up into lots: three short lines are slanted to the left of the vertical, the 
others, to the right. Then it turns out that the x-coordinate of the set of the short lines 
slanted to the left can be broken up into two lots: two lines are situated on the left part of 
the raster; the other eight, on the right part. The collection of Boolean numbers 
corresponding to the second lot is the distinguishing one, “to the right class belong the 
short lines slanted to the left of the vertical and situated in the right part of the raster.” 

Problem #26. The massive parts of the figures in the pictures differ by their position. In 
order to define their position, the program first fills the contour and then applies the 
measuring operator coordinates of the center of gravity. Then the separation by threshold 
of the x-coordinate gives us the classification principle. 

Problem #27. The description of the distinguishing rule here includes the coordinates of 
the centers of gravity of the individual parts of the picture. Therefore the program first 
separates the pictures by connectedness, measures the coordinates of the centers of 
gravity and breaks up into lots the x-coordinates (see Fig. 9). This operation produces at 
the output three collections of Boolean numbers of the second level, corresponding to the 
three lots into which the x-coordinates of the centers of gravity were broken up. After 
this, as a result of applying to the second collection of Boolean numbers the logical 
operator, the program gives on the first level the collection of Boolean numbers 
corresponding to the statement “in the picture there exists a fragment situated in the 
middle of the raster (it belongs to the second lot)”. This is the distinguishing collection of 
Boolean numbers. 

Problem #28. This problem differs from the previous one in the following: what are 
broken up into lots here are not the x-coordinates of the whole set of fragments, but only 
those of the subset of “white” (contour) figures. The second distinction, which consists of 
a considerable variety of the pictures-fragments, was irrelevant from the point of view of 
the distinguishing rule, but influenced the entire search during the training. As a result the 
program stores in memory a large number of collections of Boolean numbers (reflecting 
this variety of pictures) and, consequently, spends much time processing all these 
collections. The behavior of the program while solving this problem is described in detail 
in §5.2. Here we should notice one more difference between the behavior of the program 
and that of people in solving problems. What is meant here is the difference in difficulty 
of classification principles that use the information about the position of figures on the 
raster. It has turned out that the subjects immediately notice the mutual position of figures 
or their parts, but have difficulty finding the distinguishing rules based on the absolute 
positions of figures. The program defines the mutual positions of figures with the help of 
the operator comparison, whose arguments are the absolute coordinates of the centers of 
gravity of each figure. However, it starts comparing the pairs of parameters only after 
having investigated the possibility of building the distinguishing rule on the basis of each 
of these parameters separately. Thus the program, unlike people, prefers as simpler 
precisely those distinguishing rules that include absolute coordinates. 

Problem #29. This is one more variant of the classification principle that uses absolute 
positions of figures. In order to single out the subset of the outer points, the program first 
applies the operator contour filling; as a result, the inner points get erased and in every 
picture there will be only two fragments left. Then, after separating the pictures into 
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fragments, application of the operator contour isolation gives at the output two 
collections of Boolean numbers defining the subsets of the continuous figures and 
contour points. All the distinguishing rules built by the program in the process of solving 
this problem are described in §5.2. 

The search tree for this problem is defined by two factors. First, it depends greatly on the 
material given (on the problem itself). Indeed, the appearance in machine memory of, for 
instance, a collection of Boolean numbers entails the use of several operators: logical 
operator, operator union, etc. Each one of these operators can, in its turn, store in 
memory new output collections of objects. For example, the use of such an operator as 
union (with all the unavoidable re-drawings and measurements that follow) immediately 
produces a large number of such collections. And each one of these collections will, in its 
turn, require the use of some operations, etc. If we compare this search for the 
distinguishing rules with the search for the way out of a labyrinth, our situation can be 
represented as a changing (constantly re-built) labyrinth, where each step along a passage 
can add new passages to this labyrinth. Generally speaking, these additions are different 
in different problems, and as a result the search goes on in different labyrinths. Therefore, 
it is the problem itself that defines what the program will do: whether it will wander in 
the dead ends — re-built as a result of its work — or build only bridges leading to the 
goal. 

On the other hand, at each crossroads of this labyrinth the choice of the path is defined by 
the order of execution of operators as given to the program. The change of this order may 
lead to considerable changes of solution time for the same problem. On the other hand, an 
order chosen once and for all may be convenient for solving certain problems (those in 
which the variants leading to solution are checked first) and inconvenient for others.  

A good example of this situation we find in Problem #29. The pictures contain few 
elements, and the elements exhibit little variety. As a result, there are few collections of 
Boolean numbers in memory (see Table 2). Therefore the search should not be long. 
However, the order of searching turns out to be very inconvenient: among all the possible 
variants of application of the operator separation by connectedness, its application to 
pictures — the result of work of the operator contour filling — happens last; hence we 
end up with a very long solution time. 

Problem #30. An example of the situation unfavorably influenced by the two factors 
mentioned above: on the one side, the order of searching does not correspond to the 
problem; on the other side, during the processing of all the hopeless variants the program 
stores in memory a large number of collections of Boolean numbers which in their turn 
require processing. 

Problem #31. This is a very complicated problem, both for people and the program. In 
order to solve it, parts of parts of pictures must be analyzed. Indeed, the first separation of 
pictures by connectedness gives on the second level eleven pictures-fragments, each one 
depicting one black figure with little white lines. In order to isolate these lines, the 
operator contour isolation must be applied to the pictures-fragments; then they must be 
again separated by connectedness. The sequence of operations which led to the separation 
of pictures into classes was as follows: the whole set of fragments obtained as a result of 
previous operations was broken up into two lots by the length of the contour — there are 
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short (contours of little white lines) and long (outside contours of figures) parts. After 
this, the slope of the subset of parts with the short contour is broken up into lots; the little 
lines may be only vertical or horizontal. The union of the last ones gives at the output on 
the second level the collection of pictures-fragments, each having only contours of 
horizontal lines. From the sum total of eleven pictures-fragments, nine will have three 
horizontal lines and two will be empty — the correspondent fragments have no horizontal 
lines. After the hull filling and the subsequent measurement of the area, the threshold 
operator notices that the area can be broken up into three lots: a “zero” lot for two empty 
pictures, as well as a “small” and a “big” lot (defined by whether the small lines are 
situated compactly or far away from one another). Finally, the logical operator, using one 
of the output of the threshold operator — the collection of Boolean numbers of the 
second level corresponding to the “small” area — forms on the first level a collection of 
Boolean numbers that correctly separates pictures into classes. These Boolean numbers 
can be interpreted as the truth-values of the statement given in the caption of the Problem. 

Problem #32. The distinguishing rule: divide the picture by connectedness; measure the 
coordinates of the centers of gravity; separate fragments (into the left ones and the right 
ones) by applying the threshold operator to the x-coordinate of the centers of gravity (the 
program finds the threshold value of the x-coordinate via the procedure of breaking up 
into lots); apply the operator union to all the right fragments; apply the measuring 
operator area to the pictures obtained as a result of the previous operation; separate them 
into big and small by applying the threshold operator to the result of the previous 
operation. To the right class belong the pictures with small area (unions of all the right 
fragments of the pictures). 

The program, while searching for this distinguishing rule, before separating the fragments 
of pictures into left and right ones, separates them into big and small ones (the area of 
fragments is broken up into lots). Consequently, the program performs separately the 
union of big and small fragments (which in itself does not lead to finding a solution, yet 
takes up much time) before performing the union of the right fragments. 

Problem #33. Four pictures were added to the training collection, to facilitate the 
solution. Because of the differences in the size of individual pictures-fragments in the 
additional pictures, the area of figures cannot be broken up into lots, and the program 
solves the problem more quickly. 

Problem #34. One of the simplest problems using the operator comparison. The 
distinguishing rule: fill the contour; measure the area of the obtained picture; apply the 
operator hull filling to the pictures; measure the area of the pictures obtained as a result of 
the previous operation; if the ratio of these areas is small, then the picture belongs to the 
left class. 

Problem #35. The distinguishing rule is similar to the previous one: measure the area of 
the pictures; fill the convex hull; measure the area of the pictures obtained as a result of 
the previous operation; if the ratio of these areas is small, then the picture belongs to the 
right class. 

Problem #36. In this case the arguments of the operator comparison are the area of the 
convex hull of the sum total of small points and the area of the convex hull of the sum 
total of lines. If the ratio of there areas is small, the picture belongs to the left class. 
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The structure of complex drawing operators (Fig. 14) necessary to isolate points and lines 
is described in §3.8. 

Problem #37. In this problem the operator comparison compares the slopes of the 
figures, one of which is made up by vertical spots and the other, by horizontal spots. If 
the slopes of these figures are equal then the picture belongs to the right class.  

In order to isolate each one of such figures the program first divides the pictures into 
fragments and measures the slope of the obtained figures. The slope breaks up into two 
lots. As a result the threshold operator produces (on the second level) two collections of 
Boolean numbers defining the subset of horizontal and vertical spots. Applying the 
operator union to the first one of these collections we get on the first level pictures with 
only horizontal spots. Then a convex hull of the obtained images is filled and the slope is 
measured. An analogous sequence of operations applied to the second collection of 
Boolean numbers (of the second level) allows us to define the slope of the figures 
composed of vertical spots. 

Problem #38 Unlike in the four previous problems, which also used the operator 
comparison, in this problem the arguments of the operator comparison are collections of 
numbers of different levels. One argument (a collection of numbers of the first level) is 
the slope of the figures created from the input images by the operation convex hull filling; 
the second argument (a collection of numbers of the second level) is the slope of figures 
obtained after dividing the pictures into fragments. The application of the operator 
comparison to these collections of numbers gives at the output two collections of 
Boolean numbers of the second level defining the subsets of the fragment-segments 
parallel and perpendicular to the big axis of a whole. After this, the application of the 
logical operator to the first of these two collections of Boolean numbers allows us to 
divide the pictures into classes: “to the left class belong the pictures in which there exists 
a segment oriented along the axis of the figure”. 

Problem #39. To build the distinguishing rule the program must divide the pictures into 
fragments by boundaries. The language of the program’s elementary operators does not 
allow us to build distinguishing rules of the following type: the given fragment of the 
figure is connected to this or that fragment. However, the comparison of the mutual 
position of fragments (using the operator comparison) allows the program to describe the 
distinguishing rule in this problem in terms such as “close–far”. The program gets the 
arguments necessary for the operator comparison in the following way: 1) application of 
the operator contour filling (on the first level) and the subsequent measurement of the 
coordinates of the centers of gravity give the vector of coordinates (two collections of 
numbers) of the center of gravity of the figures; 2) analogously, the division of pictures 
into fragments and the subsequent measurement of coordinates give the vector of 
coordinates of the centers of gravity of the fragments; 3) contour filling (after the division 
of pictures into fragments) and the subsequent contour isolation give a collection of 
Boolean numbers defining the subset of individual segments (analogously to Problem 
#2). The Boolean numbers of this collection correspond to the truth-values of the 
statement “the given part stays contour even after contour filling”. Applying the operator 
comparison to these three collections we see that the distance between the centers of 
gravity of the segments and of the entire picture breaks up into two lots. As a result the 
operator comparison gives at the output two collections of Boolean numbers (of the 



 67

second level) defining the subsets of the segments situated either close to the center of 
gravity of the figure, or far from it. The application of the logical operator to each one of 
these collections of Boolean numbers produces on the first level two collections of 
Boolean numbers each one of which turns out to be distinguishing. The first one of them 
gives the following classification principle: “if in a picture there exists a segment situated 
close to the center of gravity of the figure, then the picture belongs to the right class”. 

Problem #40. The same collection of pictures as Problem #39. The classification 
principle is very simple and does not use division into fragments; the left class differs 
from the right one in that it contains contour pictures. 

Problem #41. This problem is similar to Problem #39. One of the possible solutions is: 
the segments are situated to the left or to the right of the figures. In fact, even before 
separating the pictures by boundaries, the program finds another solution of this problem. 
It uses the comparison of the coordinates of the centers of gravity. The program divides 
the pictures into fragments and then measures the coordinates of the centers of gravity of 
the obtained figures twice — after contour filling and after convex hull filling. It can be 
noted that the directions into which the centers of gravity are shifted as a result of hull 
filling will be different for different figures. Consequently, the application of the operator 
comparison to this pair of vectors of the coordinates separates the figures into two 
subsets, and the subsequent application of the logical operator gives the following 
classification principle: “to the left class belong the pictures containing at least one of the 
figures whose center of gravity gets shifted to the left after convex hull filling”. 

Problem #42. In this problem the massive black figures represent “noise”. The program 
gets rid of it by dividing the pictures into fragments and then applying operator union to 
the contour fragments (small points). The application of the operator convex hull filling to 
this union of points produces horizontal arrows pointing to the right in the pictures of the 
left class and to the left in the pictures of the right class. 

The proposed language of elementary operators lacks such human expressions as “arrows 
pointing to a certain direction”, so the program formulates the distinguishing rule in 
terms, accessible to it, though not completely human. The program measures the 
coordinates of the centers of gravity of the figures obtained as a result of the operations 
described above. Then it applies to these coordinates the operator contour isolation and 
again measures the coordinates of the centers of gravity of the obtained contour figures. It 
is the application of the operator comparison to the pair of vectors of coordinates that 
leads to the separation of the pictures of the training collection into classes. 

Problem #43. The branch of the search that leads to the distinguishing rule in this 
problem looks like this: the program consecutively divides the pictures into fragments by 
connectedness and by branching nodes. The measurement of the length of thus obtained 
lines (parts of the pictures) and the subsequent application of the threshold operator 
produce at the output three collections of Boolean numbers (of the third level) defining 
the subsets of individual points, short segments and long segments. The breaking up into 
lots of the slope of the subset of the long segments separates segments into those tilted to 
the left and those tilted to the right (of the vertical). The logical operator (applied to the 
objects of the third level and supplying the objects to the first level) gives us the 
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classification principle corresponding to the statement “in the picture of the left class 
there exists a long segment tilted to the left”. 

Problem #44. Training using the test material. The solution of this problem is described 
in §5.4. 

Problem #45. The straight lines crossing the figures make the solution of this problem 
more difficult. In order to erase them the program first builds a complex drawing 
operator, whose structure is described on page 38 in §3.8, Complex operators. 
Application of this operator to the pictures of the training collection produces at the 
output pictures that differ from the input ones by the lack of the bothersome straight lines 
(Fig. 16). Then the application of operator contour filling separates the closed lines from 
the non-closed ones and thus separates the pictures of the left class from the pictures of 
the right class. 

Problem #46. Just as in the previous problem, the straight segments here represent noise, 
and after dividing the pictures into fragments (by connectedness) the program 
analogously isolates and unites the subset of the oblique lines. Then the convex hull 
filling, measurement of its thickness, and the break-up into lots by this parameter isolate 
the subset of pictures in which the oblique line segments build a thin elongated figure. 
The corresponding collection of Boolean numbers correctly divides the pictures of the 
training collection into classes. 

Problem #47. The final stage of solution is the same as in the previous problem; the 
program must isolate the pictures in which the small figures build a straight line. In order 
to isolate the subset of the small figures the program first divides the pictures by 
connectedness, then isolates the contour, then divides by connectedness again. The length 
of the contour of the fragments obtained on the third level breaks up into two lots: the 
figures with the long contour and the figures with the short contour. After this, in order to 
build the distinguishing rule the program uses the subset of pictures with the short 
contour. 

The longer solution time for this problem is explained by the fact that the program first 
goes along a wrong path. After the first division of pictures into fragments the area of 
these new pictures is broken up into two lots. The slope of the subset of “big” figures — 
a parameter, irrelevant for the distinguishing rule — in its turn is broken up into tow lots 
(figures with the vertical orientation and figures with the horizontal orientation) and thus 
strongly influences the further search. Then the program tries to apply the operator union 
(with all the possible subsequent re-drawings and measurements) separately to the 
vertical big figures and to the horizontal big figures, and spends a long time doing this. 

Problem #48. Four pictures were added to the previous problems in order to exclude the 
unnecessary breaking up into lots of the slope of the big figures (on the second level). As 
a result the program finds the same distinguishing rule in a shorter time. 

 

6. CONCLUSION 
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A system capable of learning on a small number of examples must necessarily have a 
complex enough initial organization. It has to possess a large quantity of a priori data 
about its environment. In the program described here the a priori information is coded in 
the language, and not only in the sum total of the operators, but also in the rules of 
search. Experiments with the program have shown that the chosen language is, indeed, to 
a certain degree adequate for the world of “human” visual problems. 

In §5.5 we pointed out some discrepancy between the behavior of the program and that of 
people (even in the problems the program had been created to solve). Some of these 
discrepancies can be explained by the poverty of the list of operators. Indeed, sometimes 
the program, while solving some problems, very complicated for people, cannot learn to 
distinguish a triangle from a square. The addition to the program of new operators must 
enhance its capabilities.6 One more difference in the behavior of the program and that of 
people is due to the fact that the program thinks “too deeply” — the depth of search for 
the distinguishing rules is too great. Such discrepancies are easy to get rid of. However, 
the further refining of the program in this direction will add little to our understanding of 
the process of visual perception. In our opinion, today the problems of modeling are 
centered not in the sphere of plain black and white geometric problems (such as M. 
Bongard’s ones [5]). 

The latest developments in computers resulted in publication of works that expose 
“theories of thinking” in the form of computer programs [11]. These programs deal 
mostly with solving logical and mathematical problems and proving theorems, that is, 
they work in the areas where conscious psychological processes play an especially 
important role. Therefore it becomes possible to widely use self-observation and special 
psychological tests [12] to get information about the algorithms used by people. Such a 
method of theorizing in the domain of visual perception is complicated by the fact that 
for people the processes connected to solving visual problems are mostly unconscious. A 
good example of this is the automatic “lighting correction” in the mechanisms of constant 
color perception [13], which occurs totally unconsciously (and hence remained outside of 
the scope of attention of researchers for a long time). 

Up to the present moment there have been several attempts at modeling the process of 
visual recognition training. There were large discrepancies between the behavior of the 
program and that of people in case of such programs as Perceptron [14] or Geometry 
[15]. It was obvious that these programs learn very differently from how a person does, 
and therefore cannot serve as a basis for building a theory of learning (training). On the 
other hand, the behavior of the program described here (while solving a limited class of 
problems) was close to human. The main shortcoming of the program (as a model of the 
process of recognition training) consists in that it can solve problems from too narrow an 
area (as compared to people’s), even though probably still considerably larger than the 

                                                 
6  In particular, we have to give to the program a possibility to divide lines into separate points, measuring 
in each point the slope and the curvature of the line. Then these parameters can be broken up into lots 
according to the general scheme. In case of a successful break-up, the subsequent union of the points of one 
of the lots would allow us to get individual segments of lines with this or that characteristic: the application 
of the operator union to the points with a constant slope will allow us to isolate individual sides of 
polygons; the application of the operator union to the points at which the line has big (and, separately, 
small) curvature will allow us to distinguish between the vertices and the sides of polygons. 
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world of Perceptron’s problems. This can also be a cause of the discrepancy in the 
behavior of the program and that of people even within the domain of these problems. 
Indeed, having limited the created program to learning only the recognition of flat 
images, we cannot be always sure that in psychological experiments people will be 
solving precisely this problem. Therefore what we need now is not any further refining of 
the program, but rather some corrections on the level of formulating the problem, 
deepening our understanding of the problems which people put and solve on the level of 
visual perception. 
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APPENDIX 
Each one of the 48 problems offered to the system for training contains several pictures 
broken into two classes — left and right. In some problems, together with the training 
pictures, the system was offered some test pictures. The test material is given in the 
bottom part of the corresponding drawings. Below are the classification principles 
(“answers”) usually found for these problems by people. 

Problem #1. In the pictures of the left class there are ellipses; in the pictures of the right 
class, straight line segments. 
Problem #2. Training on the test material. Same as Problem #1. 
Problem #3. In the pictures of the right class there exists a straight line segment. 
Problem #4. In the pictures of the right class there exists a straight line segment outside 
of the contour. 
Problem #5. The classes differ by the slope of the longitudinal axis of the figure. 
Problem #6. In the pictures of the right class there are thin ellipses; in the pictures of the 
left class, “fat” ellipses. 
Problem #7. In the pictures of the left class there are long ellipses; in the pictures of the 
right class, short ellipses. 
Problem #8. In the pictures of the left class the white figures are oriented vertically; in 
the pictures of the right class, horizontally.   
Problem #9. Training on the test material. Same as Problem #8. 
Problem #10. Training on the test material. In the pictures of the left class the image 
occupies a small area; in the pictures of the right class, a big area. 
Problem #11. Training on the test material. The pictures of the right class contain big 
figures; the pictures of the left class contain small figures. 
Problem #12. Training on the test material. The pictures of the left class contain three 
figures; the pictures of the right class contain five figures. 
Problem #13. The pictures of the left class consist of three fragments; the pictures of the 
right consist of two fragments. 
Problem #14. The pictures of the left class contain three black rectangles; the pictures of 
the right class contain one black rectangle. 
Problem #15. In the pictures of the left class there exists one figure containing two black 
fragments. 
Problem #16. In the pictures of the left class there exists one black figure with a hole. 
Problem #17. In the pictures of the left class the contour figures are concave; in the 
pictures of the right class they are convex. 
Problem #18. The classes differ by the slope of the longitudinal axes of the areas filled 
with small points. 
Problem #19. In the pictures of the left class there are no points outside of contour 
figures. 
Problem #20. In the pictures of the left class there exists a small figure; in the pictures of 
the right class all the figures are large. 
Problem #21. Same as Problem #20. 
Problem #22. In the pictures of the left class there are short lines; in the pictures of the 
right class, long lines. 
Problem #23. See §5.5. 
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Problem #24. Training on the test material. See §5.5. 
Problem #25. In the pictures of the right class there are short segments tilted to the left of 
the vertical in the right part of the raster. 
Problem #26. In the pictures of the left class the figures are situated to the left; in the 
pictures of the right class they are to the right. 
Problem #27. In the pictures of the left class all figures are located around the center of 
the raster. In the pictures of the right class the figures are located near the edges. 
Problem #28. In the pictures of the left class the white figures are situated in the left part 
of the raster; in the pictures of the right class, in the right part. 
Problem #29. The isolated (outside) point in the pictures of the left class is situated in the 
left part of the raster; in the pictures of the right class, in the right part of the raster. 
Problem #30. In the pictures of the left class there is at least one small square (white or 
black). 
Problem #31. In each picture of the left class there exists at least one black figure in 
which the horizontal white lines are situated in a compact group. 
Problem #32. The total area of the figures situated in the right part of the raster is big in 
the pictures of the left class and small in the pictures of the right class. 
Problem #33. Same as Problem #32. 
Problem #34. In the pictures of the left class the figures are more concave than in the 
pictures of the right class.  
Problem #35. In the pictures of the left class the figures are “darker” than in the pictures 
of the right class.  
Problem #36. In the pictures of the left class the small points occupy smaller area than 
lines; in the pictures of the right class, they occupy a larger area. 
Problem #37. In the pictures of the left class the two figures consisting, respectively, of 
vertical and horizontal spots are perpendicular; in the right class they are parallel. 
Problem #38. In the pictures of the left class the segments making up the elongated 
figure are situated alongside the figure; in the right class, perpendicular to it. 
Problem #39. In the pictures of the left class the straight-line segments are touching the 
smaller fragment of the figure (“horns”); in the pictures of the right class, the bigger 
fragment (“legs”). 
Problem #40. In the pictures of the left class the figures are white. 
Problem #41. In the pictures of the left class the straight line segments are to the left of 
the figures; in the pictures of the right class, they are to the right of the figures. 
Problem #42. The small points form an arrow that points to the left in the pictures of the 
left class, and to the right in the pictures of the right class. 
Problem #43. The big straight-line segment in the pictures of the left and right classes 
has different slope. 
Problem #44. Training on the test material. Same as Problem #43. 
Problem #45. Pictures of the left class are open after subtracting the straight lines; 
pictures of the right class are closed. 
Problem #46. In the pictures of the left class the curved lines form a straight line. 
Problem #47. In the pictures of the right class the small figures (black and white) are 
situated on one straight line. 
Problem #48. Same as Problem #47. 
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