Greek Numbers and Numerals (Ancient and Modern)
The present page is part of the author’s
set of pages on the Greek language
This page attempts to explain the following topics:
- How numbers are written and pronounced in Modern
Greek
- How numbers used to be written and pronounced in
Ancient Greek
First, let us make one observation that is crucial for
understanding both the ancient and modern counting system:
Greeks, throughout recorded history, have used the
decimal system
Notice that by “decimal system” I mean
a system that uses the number 10 as its so-called “base”; I do not
mean one that uses our familiar Arabic numerals 1, 2, 3, etc. Not all
ancient peoples used decimal systems. The Romans, for example, used a
system that resembles more a base-5 system; the Babylonians used a
system that is nearly base-60; some cultures have been known that use
the binary system (base-2, like modern computers). The majority of
ancient peoples, however, including the Chinese, the Greeks, and the
Egyptians, used the decimal system. (The reason for this preference is
obvious: we have 10 fingers.)
Although for Greeks the base of the
system has always been 10, the writing system has been changed
between ancient and modern times.
- In Modern Greek, the familiar Arabic
numerals are used for writing numbers
- In Ancient Greek, a system based on the
Greek alphabet was used for writing numbers
Therefore, nothing needs to be
explained in Modern Greek regarding the writing of numbers; the latter
needs explanation only in the case of Ancient Greek.
Note, for readers of
Biblical Koine Greek: In reading the
New Testament in the original Greek (the “koine” dialect), as well
as the Old Testament in the Septuagint (the “official” ancient
translation of the Hebrew original), you will encounter Arabic
numerals (for example: 15:27, etc.) You may think that this
contradicts the above statements. It should be understood that
Arabic numerals appear only in our modern printing of the
ancient texts. Ancient handwritten texts of the Bible certainly
employed the ancient (alphabetic) style of writing numbers. You may
also wonder how to read such numbers. No matter what writing
notation was used, numbers were pronounced as numbers. For example,
the number 12 was written as ιβ
in ancient Greek (you will learn why, below); but it was not
pronounced as /ib/, but through the word for number “twelve” (δυοκαίδεκα,
in ancient Greek). You may choose to use either the Ancient, or the
Modern way of pronouncing numbers in the Bible
whichever seems most
convenient to you.
With the above in mind, let us now
proceed to the two cases, Modern and
Ancient, separately.
Numbers in Modern Greek
Cardinal Numbers
Cardinal numbers are the ones we use
for counting, in the abstract: one, two, three, etc. (as
opposed to ordinal numbers:
first, second, third, etc., given below). Assuming the reader is
familiar with numbers in English, the corresponding system in Greek
should be perceived as easy, because it is very similar to the
English one. The similarity goes to such things as having special words
for eleven and twelve, (and with tw- hinting
at the origin of this word), having the numbers from 13 to 19 formed by
a suffix (-teen; it’s a prefix in Greek), while larger 2-digit
numbers are formed by the tens, followed by the digits (e.g.,
seventy one). All these characteristics are same in Greek as in
English.
One detail that differs is the
following: in Greek, the cardinal numbers for one, three, and
four, have the form of adjectives; hence, they can be declined
according to gender and
case (but obviously not according to
number, since one can be only
in the singular, and three and four only in the
plural). All the other numbers have just a single, undeclined form. The
following table shows how to count in modern Greek, from zero to twenty.
0 |
zero |
μηδέν |
1 |
one |
ένα (m: ένας, f: μία, n: ένα) |
2 |
two |
δύο |
3 |
three |
τρία (m: τρεις, f: τρεις, n: τρία) |
4 |
four |
τέσσερα (m: τέσσερις, f: τέσσερις, n: τέσσερα) |
5 |
five |
πέντε |
6 |
six |
έξι |
7 |
seven |
επτά or εφτά |
8 |
eight |
οκτώ or οχτώ |
9 |
nine |
εννέα or εννιά |
10 |
ten |
δέκα |
11 |
eleven |
έντεκα |
12 |
twelve |
δώδεκα |
13 |
thirteen |
δεκατρία |
14 |
fourteen |
δεκατέσσερα |
15 |
fifteen |
δεκαπέντε |
16 |
sixteen |
δεκαέξι or δεκάξι |
17 |
seventeen |
δεκαεπτά or δεκαεφτά |
18 |
eighteen |
δεκαοκτώ or δεκαοχτώ |
19 |
nineteen |
δεκαεννέα or δεκαεννιά |
20 |
twenty |
είκοσι |
Where an alternative form is given, it
is the more colloquial one. This means that you will usually
encounter the first form more often in books, or written language in
general, while the second form is usually more common in speech
(the emphasis on the word usually means there isn’t any
hard-and-fast rule for when and where to use each form).
To understand how to use the
gender-declined forms for one, three, and four, note
the following: When counting in the abstract (for example,
seconds of time, printed lines on a page, or any other case where you
don’t care to refer to the noun being counted, but you simply want to
say one, two, three, etc.), then use the neuter form:
ένα, δύο, τρία, τέσσερα, etc. When you want to make reference
to the counted noun, however, or (and this is mandatory) if the number
appears in front of the counted noun in a sentence, then the number (one,
three, or four) must agree with the noun in gender and
case. For example, if you want to say: one fly, since the word
for fly (the insect) in Greek is of feminine gender, you will
say: μία μύγα (not ένα μύγα). If this is in the
genitive case, the form will be: μίας μύγας. For three flies,
the correct form is: τρεις μύγες (not τρία μύγες). The
declension for the number one is identical to the
indefinite article a/an in Modern
Greek (i.e., the two words, one and a/an coincide).
The above remarks hold for every
composite number that uses these three simple numbers as a component,
such as 13, 14, 21, 1001, etc.
To count beyond twenty in Greek we
follow the same pattern as in English:
21 |
twenty one |
είκοσι ένα |
22 |
twenty two |
είκοσι δύο |
23 |
twenty three |
είκοσι τρία |
... |
... |
... |
30 |
thirty |
τριάντα |
40 |
forty |
σαράντα |
50 |
fifty |
πενήντα |
60 |
sixty |
εξήντα |
70 |
seventy |
εβδομήντα |
80 |
eighty |
ογδόντα |
90 |
ninety |
ενενήντα |
100 |
one hundred |
εκατό |
Now, to count beyond 100, one should
notice this: although the word for one hundred is εκατό,
every number between 101 and 199 uses the form εκατόν, with
that extra nu (ν) at the end. Thus,
101 |
one hundred and one |
εκατόν ένα |
102 |
one hundred and two |
εκατόν δύο |
103 |
one hundred and three |
εκατόν τρία |
... |
... |
... |
110 |
one hundred and ten |
εκατόν δέκα |
111 |
one hundred and eleven |
εκατόν έντεκα |
... |
... |
... |
120 |
one hundred and twenty |
εκατόν είκοσι |
121 |
one hundred and twenty one |
εκατόν είκοσι ένα |
... |
... |
... |
198 |
one hundred and ninety eight |
εκατόν ενενήντα οκτώ |
199 |
one hundred and ninety nine |
εκατόν ενενήντα εννέα |
(This difference occurs because the
original (ancient) word for 100 was ἑκατόν, but
the final ν (nu) was dropped out of use by “erosion”; the other numbers
between 101 and 199 were never used as commonly as 100, so they retained
their final consonant.)
Another observation is that, contrary
to English, we do not insert the word and between εκατόν and
the number that follows.
The numbers for multiples of 100 up to
1000 all have genders, and are as follows:
200 |
two hundred |
διακόσια (m: διακόσιοι, f: διακόσιες, n:
διακόσια) |
300 |
three hundred |
τριακόσια (m: τριακόσιοι, f: τριακόσιες, n:
τριακόσια) |
400 |
four hundred |
τετρακόσια (m: τετρακόσιοι, f: τετρακόσιες,
n: τετρακόσια) |
500 |
five hundred |
πεντακόσια (m: πεντακόσιοι, f: πεντακόσιες,
n: πεντακόσια) |
600 |
six hundred |
εξακόσια (m: εξακόσιοι, εξακόσιες, f: n:
εξακόσια) |
700 |
seven hundred |
επτακόσια (m: επτακόσιοι, f: επτακόσιες, n:
επτακόσια) |
800 |
eight hundred |
οκτακόσια (m: οκτακόσιοι, f: οκτακόσιες, n:
οκτακόσια) |
900 |
nine hundred |
εννιακόσια (m: εννιακόσιοι, f: εννιακόσιες,
n: εννιακόσια) |
1000 |
one thousand |
χίλια (m: χίλιοι, f: χίλιες, n: χίλια) |
Now, let us practice with some
“random” numbers:
528 |
five hundred and twenty eight |
πεντακόσια είκοσι οκτώ |
1001 |
one thousand and one |
χίλια ένα |
1934 |
one thousand nine hundred and thirty four |
χίλια εννιακόσια τριάντα τέσσερα |
Continuing beyond 1999, the plural of
the word for thousand is used, i.e., χιλιάδες (instead
of χίλια). Therefore, the numbers for three and four thousand have to
match in gender (feminine) and case with χιλιάδες:
2000 |
two thousand |
δύο χιλιάδες |
3000 |
three thousand |
τρεις χιλιάδες |
4000 |
four thousand |
τέσσερις χιλιάδες |
5000 |
five thousand |
πέντε χιλιάδες |
6000 |
six thousand |
έξι χιλιάδες |
7000 |
seven thousand |
επτά χιλιάδες |
8000 |
eight thousand |
οκτώ χιλιάδες |
9000 |
nine thousand |
εννέα χιλιάδες |
10000 |
ten thousand |
δέκα χιλιάδες |
11000 |
eleven thousand |
έντεκα χιλιάδες |
... |
... |
... |
Now let us make some random tests:
4305 |
τέσσερις χιλιάδες τριακόσια πέντε |
10719 |
δέκα χιλιάδες επτακόσια δεκαεννέα |
52860 |
πενήντα δύο χιλιάδες οκτακόσια εξήντα |
844844 |
οκτακόσιες σαράντα τέσσερις χιλιάδες
οκτακόσια σαράντα τέσσερα |
Did you notice the tricky part in the
last example? Although the word for 800 is οκτακόσια (in the abstract,
or neuter gender), when we want to say eight hundred thousand
we have to match the gender of οκτακόσια with χιλιάδες (feminine),
hence: οκτακόσιες χιλιάδες.
We continue with the words for one
million, two million, etc. Notice that, in Greek numerals, the mark that
separates the thousands is the period, not the comma:
1.000.000 |
one million |
ένα εκατομμύριο |
2.000.000 |
two million |
δύο εκατομμύρια |
3.000.000 |
three million |
τρία εκατομμύρια |
... |
... |
... |
10.000.000 |
ten million |
δέκα εκατομμύρια |
20.000.000 |
twenty million |
είκοσι εκατομμύρια |
... |
... |
... |
100.000.000 |
one hundred million |
εκατό εκατομμύρια |
... |
|
|
900.000.000 |
nine hundred million |
εννιακόσια εκατομμύρια |
Continuing beyond that, the Greek
system uses the American English convention for billion, trillion, etc.,
i.e., a billion is a thousand million, a trillion is a million million,
etc. The words beyond those (quadrillion, etc.) are seldom used in
practice, except in some areas of science.
Note: the word for billion,
δισεκατομμύριο, is often seen in its abbreviated form: δισ., and even
δις, as if the abbreviation is the word. Likewise, the word for
trillion, τρισεκατομμύριο, is often abbreviated as τρισ., and even τρις.
People often use these abbreviations in speech, too.
1.000.000.000 or 109 |
one billion |
ένα δισεκατομμύριο |
1.000.000.000.000 or 1012 |
one trillion |
ένα τρισεκατομμύριο |
1.000.000.000.000.000 or 1015 |
one quadrillion |
ένα τετράκις εκατομμύριο |
1018 |
one quintillion |
ένα πεντάκις εκατομμύριο |
1021 |
one sextillion |
ένα εξάκις εκατομμύριο |
1024 |
one septillion |
ένα επτάκις εκατομμύριο |
1027 |
one octillion |
ένα οκτάκις εκατομμύριο |
1030 |
one nonillion |
ένα εννεάκις εκατομμύριο |
1033 |
one decillion |
ένα δεκάκις εκατομμύριο |
1036 |
one undecillion |
ένα ενδεκάκις εκατομμύριο |
1039 |
one duodecillion |
ένα δωδεκάκις εκατομμύριο |
1042 |
one tredecillion |
ένα δεκατριάκις εκατομμύριο |
1045 |
one quattuordecillion |
ένα δεκατετράκις εκατομμύριο |
1048 |
one quindecillion |
ένα δεκαπεντάκις εκατομμύριο |
1051 |
one sexdecillion |
ένα δεκαεξάκις εκατομμύριο |
1054 |
one septendecillion |
ένα δεκαεπτάκις εκατομμύριο |
1057 |
one octodecillion |
ένα δεκαοκτάκις εκατομμύριο |
1060 |
one novemdecillion |
ένα δεκαεννεάκις εκατομμύριο |
1063 |
one vigintillion |
ένα εικοσάκις εκατομμύριο |
1066 |
one unvigintillion |
ένα εικοσιάπαξ εκατομμύριο |
1069 |
one duovigintillion |
ένα εικοσιδίς εκατομμύριο |
1072 |
one trevigintillion |
ένα εικοσιτρίς εκατομμύριο |
1075 |
one quattuorvigintillion |
ένα εικοσιτετράκις εκατομμύριο |
... |
... |
... |
...You get the picture. Even in
science, such numbers are almost never spelled out, but written as
numerals with the exponential notation instead. The last number included
in the table above is close to the total number of elementary particles
in the universe (at last count, ca. 2000 CE).
Let us make one last practice, with a
number considerably “smaller” than the ones of the last rows (its parts
are shown on separate lines, for ease of identification):
5.577.345.001.724.230.294 |
πέντε πεντάκις εκατομμύρια
πεντακόσια εβδομήντα επτά τετράκις εκατομμύρια
τριακόσια σαράντα πέντε τρισεκατομμύρια
ένα δισεκατομμύριο
επτακόσια είκοσι τέσσερα εκατομμύρια
διακόσιες τριάντα χιλιάδες
διακόσια εννενήντα τέσσερα |
Just for the fun of it, let us finally
proceed to the limits of the Modern Greek counting system. (Boy, do I
love this trivia!)
1093 |
one trigintillion |
ένα τριακοντάκις εκατομμύριο |
1096 |
one untrigintillion |
ένα τριακοντάπαξ εκατομμύριο |
1099 |
one duotrigintillion |
ένα τρακονταδίς εκατομμύριο |
10100 |
ten duotrigintillion, or
one googol |
δέκα τριακονταδίς εκατομμύρια |
... |
... |
... |
10123 |
one quadragintillion |
ένα τεσσαρακοντάκις εκατομμύριο |
10153 |
one quinquagintillion |
ένα πεντηκοντάκις εκατομμύριο |
10183 |
one sexagintillion |
ένα εξηκοντάκις εκατομμύριο |
10213 |
one septuagintillion |
ένα εβδομηκοντάκις εκατομμύριο |
10243 |
one octogintillion |
ένα ογδοηκοντάκις εκατομμύριο |
10273 |
one nonagintillion |
ένα εννενηκοντάκις εκατομμύριο |
10303 |
one centillion |
ένα εκατοντάκις εκατομμύριο |
10603 |
|
ένα διακοσάκις εκατομμύριο |
10903 |
|
ένα τριακοσάκις εκατομμύριο |
101203 |
|
ένα τετρακοσάκις εκατομμύριο |
101503 |
|
ένα πεντακοσάκις εκατομμύριο |
101803 |
|
ένα εξακοσάκις εκατομμύριο |
102103 |
|
ένα επτακοσάκις εκατομμύριο |
102403 |
|
ένα οκτακοσάκις εκατομμύριο |
102703 |
|
ένα εννεακοσάκις εκατομμύριο |
103003 |
one millillion |
ένα χιλιάκις εκατομμύριο |
106003 |
|
ένα δισχιλιάκις εκατομμύριο |
109003 |
|
ένα τρισχιλιάκις εκατομμύριο |
1012003 |
|
ένα τετράκις χιλιάκις εκατομμύριο |
1015003 |
|
ένα πεντάκις χιλιάκις εκατομμύριο |
1018003 |
|
ένα εξάκις χιλιάκις εκατομμύριο |
1021003 |
|
ένα επτάκις χιλιάκις εκατομμύριο |
1024003 |
|
ένα οκτάκις χιλιάκις εκατομμύριο |
1027003 |
|
ένα εννεάκις χιλιάκις εκατομμύριο |
1030003 |
one decimillillion |
ένα δεκάκις χιλιάκις εκατομμύριο |
1033003 |
|
ένα ενδεκάκις χιλιάκις εκατομμύριο |
1036003 |
|
ένα δωδεκάκις χιλιάκις εκατομμύριο |
1039003 |
|
ένα δεκατριάκις χιλιάκις εκατομμύριο |
1042003 |
|
ένα δεκατετράκις χιλιάκις εκατομμύριο |
1045003 |
|
ένα δεκαπεντάκις χιλιάκις εκατομμύριο |
1048003 |
|
ένα δεκαεξάκις χιλιάκις εκατομμύριο |
1051003 |
|
ένα δεκαεπτάκις χιλιάκις εκατομμύριο |
1054003 |
|
ένα δεκαοκτάκις χιλιάκις εκατομμύριο |
1057003 |
|
ένα δεκαεννεάκις χιλιάκις εκατομμύριο |
1060003 |
|
ένα εικοσάκις χιλιάκις εκατομμύριο |
1063003 |
|
ένα εικοσιάπαξ χιλιάκις εκατομμύριο |
1066003 |
|
ένα εικοσιδίς χιλιάκις εκατομμύριο |
1069003 |
|
ένα εικοσιτρίς χιλιάκις εκατομμύριο |
1072003 |
|
ένα εικοσιτετράκις χιλιάκις εκατομμύριο |
... |
... |
... |
1090,003 |
|
ένα τριακοντάκις χιλιάκις εκατομμύριο |
10120,003 |
|
ένα τεσσαρακοντάκις χιλιάκις εκατομμύριο |
10150,003 |
|
ένα πεντηκοντάκις χιλιάκις εκατομμύριο |
10180,003 |
|
ένα εξηκοντάκις χιλιάκις εκατομμύριο |
10210,003 |
|
ένα εβδομηκοντάκις χιλιάκις εκατομμύριο |
10240,003 |
|
ένα ογδοηκοντάκις χιλιάκις εκατομμύριο |
10270,003 |
|
ένα εννενηκοντάκις χιλιάκις εκατομμύριο |
10300,003 |
one centimillillion |
ένα εκατοντάκις χιλιάκις εκατομμύριο |
10600,003 |
|
ένα διακοσάκις χιλιάκις εκατομμύριο |
10900,003 |
|
ένα τριακοσάκις χιλιάκις εκατομμύριο |
101,200,003 |
|
ένα τετρακοσάκις χιλιάκις εκατομμύριο |
101,500,003 |
|
ένα πεντακοσάκις χιλιάκις εκατομμύριο |
101,800,003 |
|
ένα εξακοσάκις χιλιάκις εκατομμύριο |
102,100,003 |
|
ένα επτακοσάκις χιλιάκις εκατομμύριο |
102,400,003 |
|
ένα οκτακοσάκις χιλιάκις εκατομμύριο |
102,700,003 |
|
ένα εννεακοσάκις χιλιάκις εκατομμύριο |
103,000,003 |
one millimillillion |
ένα εκατομμυριάκις εκατομμύριο |
106,000,003 |
|
ένα δισεκατομμυριάκις εκατομμύριο |
109,000,003 |
|
ένα τρισεκατομμυριάκις εκατομμύριο |
1012,000,003 |
|
ένα τετράκις εκατομμυριάκις εκατομμύριο |
... |
... |
... |
103,000,000,000,003 |
|
ένα εκατομμυριάκις εκατομμυριάκις
εκατομμύριο |
The repetitive pattern in the
linguistic system in relation to the denotational system becomes
evident: whenever 6 zeros are “inserted” in the exponent after the first
digit (i.e., whenever the exponent is multiplied by nearly one
million it would be exactly
1 million if we ignored the last 3), then the word εκατομμυριάκις
(“million-fold”) is inserted in the linguistic expression after the word
ένα.
For those of you who have native level
of command of Greek, here is the continuation
of the idea of marching to infinity (in Greek only).
Ordinal
Numbers
Ordinal numbers are the ones we use
for ordering objects: first, second, third, etc. In Greek,
ordinal numbers have always the form of an adjective; thus, they are
declined by gender,
case, and
number. (Yes! Such numbers are declined by number, i.e.,
singular or plural: one can say first, if the object, person,
etc., is one, and something like firsts, if they are many.) The
table below gives an idea for what the words for these numbers look
like. The genders appear with the masculine first, the feminine second,
and the neuter third in sequence.
0th |
zeroth |
μηδενικός, μηδενική, μηδενικό |
1st |
first |
πρώτος, πρώτη, πρώτο |
2nd |
second |
δεύτερος, δεύτερη, δεύτερο |
3rd |
third |
τρίτος, τρίτη, τρίτο |
4th |
fourth |
τέταρτος, τέταρτη, τέταρτο |
5th |
fifth |
πέμπτος, πέμπτη, πέμπτο |
6th |
sixth |
έκτος, έκτη, έκτο |
7th |
seventh |
έβδομος, έβδομη, έβδομο |
8th |
eighth |
όγδοος, όγδοη, όγδοο |
9th |
ninth |
ένατος, ένατη, ένατο |
10th |
tenth |
δέκατος, δέκατη, δέκατο |
11th |
eleventh |
ενδέκατος, ενδέκατη, ενδέκατο |
12th |
twelfth |
δωδέκατος, δωδέκατη, δωδέκατο |
13th |
thirteenth |
δέκατος τρίτος, δέκατη τρίτη, δέκατο τρίτο |
14th |
fourteenth |
δέκατος τέταρτος, δέκατη τέταρτη, δέκατο
τέταρτο |
... |
... |
... |
20th |
twentieth |
εικοστός, εικοστή, εικοστό |
21st |
twenty first |
εικοστός πρώτος, εικοστή πρώτη, εικοστό πρώτο |
... |
... |
... |
30th |
thirtieth |
τριακοστός, τριακοστή, τριακοστό |
40th |
fortieth |
τεσσαρακοστός, τεσσαρακοστή, τεσσαρακοστό |
50th |
fiftieth |
πεντηκοστός, πεντηκοστή, πεντηκοστό |
60th |
sixtieth |
εξηκοστός, εξηκοστή, εξηκοστό |
70th |
seventieth |
εβδομηκοστός, εβδομηκοστή, εβδομηκοστό |
80th |
eightieth |
ογδοηκοστός, ογδοηκοστή, ογδοηκοστό |
90th |
ninetieth |
εννενηκοστός, εννενηκοστή, εννενηκοστό |
100th |
hundredth |
εκατοστός, εκατοστή, εκατοστό |
101st |
hundred and first |
εκατοστός πρώτος, εκατοστή πρώτη, εκατοστό
πρώτο |
|
... |
|
200th |
two hundredth |
διακοσιοστός, διακοσιοστή, διακοσιοστό |
300th |
thee hundredth |
τριακοσιοστός, τριακοσιοστή, τριακοσιοστό |
400th |
four hundredth |
τετρακοσιοστός, τρετρακοσιοστή, τετρακοσιοστό |
500th |
five hundredth |
πεντακοσιοστός, πεντακοσιοστή, πεντακοσιοστό |
600th |
six hundredth |
εξακοσιοστός, εξακοσιοστή, εξακοσιοστό |
700th |
seven hundredth |
επτακοσιοστός, επτακοσιοστή, επτακοσιοστό |
800th |
eight hundredth |
οκτακοσιοστός, οκτακοσιοστή, οκτακοσιοστό |
900th |
nine hundredth |
εννεακοσιοστός, εννεακοσιοστή, εννεακοσιοστό |
1000th |
thousandth |
χιλιοστός, χιλιοστή, χιλιοστό |
1001st |
thousand and first |
χιλιοστός πρώτος, χιλιοστή πρώτη, χιλιοστό
πρώτο |
... |
... |
... |
2000th |
two thousandth |
δισχιλιοστός, δισχιλιοστή, δισχιλιοστό |
3000th |
three thousandth |
τρισχιλιοστός, τρισχιλιοστή, τρισχιλιοστό |
4000th |
four thousandth |
τετράκις χιλιοστός, τετράκις χιλιοστή,
τετράκις χιλιοστό |
5000th |
five thousandth |
πεντάκις χιλιοστός, πεντάκις χιλιοστή,
πεντάκις χιλιοστό |
6000th |
six thousandth |
εξάκις χιλιοστός, εξάκις χιλιοστή, εξάκις
χιλιοστό |
7000th |
seven thousandth |
επτάκις χιλιοστός, επτάκις χιλιοστή, επτάκις
χιλιοστό |
8000th |
eight thousandth |
οκτάκις χιλιοστός, οκτάκις χιλιοστή, οκτάκις
χιλιοστό |
9000th |
nine thousandth |
εννεάκις χιλιοστός, εννεάκις χιλιοστή,
εννεάκις χιλιοστό |
10000th |
ten thousandth |
δεκάκις χιλιοστός, δεκάκις χιλιοστή, δεκάκις
χιλιοστό |
20000th |
twenty thousandth |
εικοσάκις χιλιοστός, εικοσάκις χιλιοστή,
εικοσάκις χιλιοστό |
... |
... |
... |
100,000th |
hundred thousandth |
εκατοντάκις χιλιοστός, εκατοντάκις χιλιοστή,
εκατοντάκις χιλιοστό |
200,000th |
two hundred thousandth |
διακοσάκις χιλιοστός, διακοσάκις χιλιοστή,
διακοσάκις χιλιοστό |
... |
... |
... |
106th |
millionth |
εκατομμυριοστός, εκατομμυριοστή,
εκατομμυριοστό |
109th |
billionth |
δισεκατομμυριοστός, δισεκατομμυριοστή,
δισεκατομμυριοστό |
1012th |
trillionth |
τρισεκατομμυριοστός, τρισεκατομμυριοστή,
τρισεκατομμυριοστό |
1015th |
quadrillionth |
τετράκις εκατομμυριοστός, τετράκις
εκατομμυριοστή, τετράκις εκατομμυριοστό |
... |
... |
... |
The continuation of the pattern should
be evident from the above, as well as from the way larger cardinal
numbers are formed (see cardinal numbers, above).
Reading
Math Symbols
Negative numbers:
The symbol - (minus) is read: μείον in Greek. For example: -12 is read:
μείον δώδεκα.
Percent:
The symbol % is used in Greek, as in English. It is read: “τοις εκατό”.
So, 23% is read: εικοσιτρία τοις εκατό.
Occasionally, the symbol ‰ is used for
“per thousand” (percent times 10, if the numbers are too low). It is
read: “τοις χιλίοις”. (Strange-looking endings such as -οις are relics
of the obsolete dative case).
Decimals:
The roles of period and comma are switched in Greek relative to English:
the period is used for separating thousands, and the comma is the
decimal point.
How to read numbers with decimals:
simply pronounce the “comma” between the two parts:
English |
Greek |
12.34 |
twelve point thirty four |
12,34 |
δώδεκα κόμμα τριάντα τέσσερα |
Fractions:
Exactly the same system as in English is used: the numerator is a
cardinal number (one, two, three,...), and the denominator is an ordinal
number (third, fourth, fifth,..., in the neuter gender). Here are some
examples:
½ |
one half |
ένα δεύτερο |
|
half (adj.) |
m: μισός, f: μισή, n: μισό |
⅓ |
one third |
ένα τρίτο |
¼ |
one fourth |
ένα τέταρτο |
|
quarter (adj.) |
τέταρτο (neuter only) |
⅔ |
two thirds |
δύο τρίτα |
¾ |
three fourths |
τρία τέταρτα |
³⁴/₅₆ |
thirty four fifty sixths |
τριάντα τέσσερα πεντηκοστά έκτα |
Numbers in Ancient Greek
Ancient Greeks used the letters of the
Greek alphabet in order to denote numbers. But how can one represent
large numbers with only 24 letters available in the Greek alphabet?
Simple: the letters from alpha to
theta, plus one extra symbol at the 6th position (α,
β, γ,
δ, ε,
ϛ, ζ,
η, θ)
played the role of the nine digits, 1,2,3,...,9. (The role of the
accent-mark, , will be
explained in a moment.) The next letter, iota (ι),
stood for 10. Now, ια was
11, ιβ was 12, and so on, up
to ιθ which was 19. Then,
the next letter in order, kappa (κ)
was used to denote 20. Likewise, lambda (λ)
was 30. And so on, up to pi (π)
which was 80; and then an extra symbol, the qoppa (ϙ),
was used for 90. Then, the next letter, rho (ρ),
was used to denote 100; sigma (σ)
was 200; and so on, up to the last letter of the alphabet, omega (ω),
which stood for 800. One final extra-alphabetic symbol, the sampi (ϡ)
was used to denote 900. From there on... well, you already noticed the
accent-mark at the upper-right of each Greek letter, right? This mark
was used to mean “this is to be read as a number, not a word of the
Greek language.” Now, when this mark was placed at the lower-left corner
of the letter, it meant that the number was to be multiplied by 1000.
Thus, α denoted
1000. (Note: there have been other notations, too, such
as placing a horizontal bar over the letters of a number. In fact, this
was the original practice; the one with the
is a more recent one. There
have also been different symbols for the numbers 6 and 90; a good
description of the development of symbols for Greek numerals can be
found
here.)
The table that follows explains all
this, and also shows the words ancient Greeks used for speaking numbers
out loud. As before, wherever genders appear, the masculine gender is
shown first, next is the feminine, and third in row is the neuter.
Arabic
numeral |
Greek
numeral |
How the number
was pronounced: |
0 |
|
οὐδείς,
οὐδεμία, οὐδέν or
μηδείς, μηδεμία, μηδέν |
1 |
α |
εἷς, μία, ἕν |
2 |
β |
δύο |
3 |
γ |
τρεῖς, τρεῖς,
τρία |
4 |
δ |
τέτταρες,
τέτταρες, τέτταρα or
τέσσαρες, τέσσαρες, τέσσαρα |
5 |
ε |
πέντε |
6 |
ϛ |
ἕξ |
7 |
ζ |
ἑπτά |
8 |
η |
ὀκτώ |
9 |
θ |
ἐννέα |
10 |
ι |
δέκα |
11 |
ια |
ἕνδεκα |
12 |
ιβ |
δώδεκα
or δυοκαίδεκα |
13 |
ιγ |
τρεισκαίδεκα,
τρεισκαίδεκα, τριακαίδεκα or
τρεῖς καὶ δέκα, τρεῖς καὶ δέκα, τρία καὶ δέκα |
14 |
ιδ |
τέτταρες καὶ
δέκα, τέτταρες καὶ δέκα, τέτταρα καὶ δέκα |
15 |
ιε |
πεντεκαίδεκα |
16 |
ιϛ |
ἑκκαίδεκα |
17 |
ιζ |
ἑπτακαίδεκα |
18 |
ιη |
ὀκτωκαίδεκα |
19 |
ιθ |
ἐννεακαίδεκα |
20 |
κ |
εἴκοσι(ν) |
21 |
κα |
εἷς καὶ
εἴκοσι, μία καὶ εἴκοσι, ἓν καὶ εἴκοσι |
... |
|
|
30 |
λ |
τριάκοντα |
31 |
λα |
εἷς καὶ
τριάκοντα, μία καὶ τριάκοντα, ἓν καὶ τριάκοντα |
... |
|
|
As suggested by the top row, ancient
Greeks had no symbol for zero, nor was zero considered a number. Their
words for zero, ουδείς and μηδείς, meant “not
even one”. The modern symbol for zero (0)
originated from the first letter of the word ουδείς
(source),
whereas the Modern Greek word for zero (μηδέν) comes from the
neuter form of the ancient word.
From this point on, only the numbers
that are multiples of 10 will be shown, assuming the pattern is
understood from the above.
Arabic
numeral |
Greek
numeral |
How the number
was pronounced: |
40 |
μ |
τετταράκοντα
or τεσσαράκοντα |
50 |
ν |
πεντήκοντα |
60 |
ξ |
ἑξήκοντα |
70 |
ο |
ἑβδομήκοντα |
80 |
π |
ὀγδοήκοντα |
90 |
ϙ |
ἐννενήκοντα |
100 |
ρ |
ἑκατόν |
110 |
ρι |
δέκα καὶ
ἑκατόν |
... |
|
|
190 |
ρϙ |
ἐννενήκοντα
καὶ ἑκατόν |
200 |
σ |
διακόσιοι,
διακόσιαι, διακόσια |
... |
|
|
300 |
τ |
τριακόσιοι,
τριακόσιαι, τριακόσια |
400 |
υ |
τετρακόσιοι,
τετρακόσιαι, τετρακόσια |
500 |
φ |
πεντακόσιοι,
πεντακόσιαι, πεντακόσια |
600 |
χ |
ἑξακόσιοι,
ἑξακόσιαι, ἑξακόσια |
700 |
ψ |
ἑπτακόσιοι,
ἑπτακόσιαι, ἑπτακόσια |
800 |
ω |
ὀκτακόσιοι,
ὀκτακόσιαι, ὀκτακόσια |
900 |
ϡ |
ἐννεακόσιοι,
ἐννεακόσιαι, ἐννεακόσια |
1000 |
|
χίλιοι,
χίλιαι, χίλια |
1001 |
|
εἷς καὶ
χίλιοι, μία καὶ χίλιαι, ἓν καὶ χίλια |
... |
|
|
2000 |
|
δισχίλιοι,
δισχίλιαι, δισχίλια |
3000 |
|
τρισχίλιοι,
τρισχίλιαι, τρισχίλια |
4000 |
|
τετράκις
χίλιοι, τετράκις χίλιαι, τετράκις χίλια |
5000 |
|
πεντάκις
χίλιοι, πεντάκις χίλιαι, πεντάκις χίλια |
6000 |
|
ἑξάκις χίλιοι,
ἑξάκις χίλιαι, ἑξάκις χίλια |
7000 |
|
ἑπτάκις
χίλιοι, ἑπτάκις χίλιαι, ἑπτάκις χίλια |
8000 |
|
ὀκτάκις
χίλιοι, ὀκτάκις χίλιαι, ὀκτάκις χίλια |
9000 |
|
ἐννεάκις
χίλιοι, ἐννεάκις χίλιαι, ἐννεάκις χίλια |
10000 |
|
μύριοι,
μύριαι, μύρια |
The ancient Greek system generally
stops here: μύρια is the largest unit in counting. Nonetheless, the
Greek mathematician and inventor Archimedes (287-212 BCE) was
interested in even larger numbers. So he came up with a system of
numbering that went way beyond the one of his contemporaries
in fact, way beyond our
modern system of naming numbers. The rest of the ancient Greek
numbering shown below is due to Archimedes.
20000 |
|
δισμύριοι,
δισμύριαι, δισμύρια |
30000 |
|
τρισμύριοι,
τρισμύριαι, τρισμύρια |
40000 |
|
τετράκις
μύριοι, τετράκις μύριαι, τετράκις μύρια |
... |
|
|
100000 |
|
δεκάκις
μύριοι, δεκάκις μύριαι, δεκάκις μύρια |
200000 |
|
εἰκοσάκις
μύριοι, εἰκοσάκις μύριαι, εἰκοσάκις μύρια |
300000 |
|
τριακοντάκις
μύριοι, τριακοντάκις μύριαι, τριακοντάκις μύρια |
400000 |
|
τεσσαρακοντάκις μύριοι, τεσσαρακοντάκις μύριαι, τεσσαρακοντάκις
μύρια |
500000 |
|
πεντηκοντάκις
μύριοι, πεντηκοντάκις μύριαι, πεντηκοντάκις μύρια |
600000 |
|
ἑξηκοντάκις
μύριοι, ἑξηκοντάκις μύριαι, ἑξηκοντάκις μύρια |
700000 |
|
ἑβδομηκοντάκις
μύριοι, ἑβδομηκοντάκις μύριαι, ἑβδομηκοντάκις μύρια |
800000 |
|
ὀγδοηκοντάκις
μύριοι, ὀγδοηκοντάκις μύριαι, ὀγδοηκοντάκις μύρια |
900000 |
ϡ |
ἐννενηκοντάκις
μύριοι, ἐννενηκοντάκις μύριαι, ἐννενηκοντάκις μύρια |
1000000 |
(?) |
ἑκατοντάκις
μύριοι, ἑκατοντάκις μύριαι, ἑκατοντάκις μύρια |
2000000 |
|
διακοσάκις
μύριοι, διακοσάκις μύριαι, διακοσάκις μύρια |
3000000 |
|
τριακοσάκις
μύριοι, τριακοσάκις μύριαι, τριακοσάκις μύρια |
4000000 |
|
τετρακοσάκις
μύριοι, τετρακοσάκις μύριαι, τετρακοσάκις μύρια |
5000000 |
|
πεντακοσάκις
μύριοι, πεντακοσάκις μύριαι, πεντακοσάκις μύρια |
6000000 |
|
ἑξακοσάκις
μύριοι, ἑξακοσάκις μύριαι, ἑξακοσάκις μύρια |
7000000 |
|
ἑπτακοσάκις
μύριοι, ἑπτακοσάκις μύριαι, ἑπτακοσάκις μύρια |
8000000 |
|
ὀκτακοσάκις
μύριοι, ὀκτακοσάκις μύριαι, ὀκτακοσάκις μύρια |
9000000 |
|
ἐννεακοσάκις
μύριοι, ἐννεακοσάκις μύριαι, ἐννεακοσάκις μύρια |
107 |
|
χιλιάκις
μύριοι, χιλιάκις μύριαι, χιλιάκις μύρια |
108 |
|
μυριάκις
μύριοι, μυριάκις μύριαι, μυριάκις μύρια |
Archimedes went on with his system,
reaching the following number (in modern notation): 1080,000,000,000,000,000,
or 1 followed by 80 quadrillion zeros, a number that in the Modern Greek
system would be called εκατό εικοσιεξάκις χιλιάκις εκατομμυριάκις
εκατομμυριάκις εκατομμύρια (see the end of the table in the Modern
system, above; Archimedes’s system named this number differently). This
was Archimedes alone, however, so his system cannot be considered part
of the traditional numbering system of ancient Greeks.
Some observations are in order:
-
First, I put a question mark at
the symbol for “one million”, because I do not have any idea of what
notation would be used. The fact of the matter is, however, that
such large numbers seldom needed to be referred to in the ancient
world; and if there indeed was a need to refer to such numbers, the
reference would be through their linguistic expression, not through
the denotational system (and that is precisely what Archimedes did).
-
Second, we see that ancient Greeks
used a different unit (μύριοι, -αι, -α) for 10000, and all higher
numbers were formed on the basis of this unit. The modern Greek word
εκατομμύριο (for “one million”) actually comes from that unit,
meaning “one hundred ten-thousands”. The usage of a different
linguistic unit for 10000 (and basing the rest on it) is reminiscent
of the Chinese numbering system (although there was no communication
between the two cultures).
-
And third, one might be tempted to
charge the ancient Greek denotational system for inadequacy to
express numbers larger than one million. This observation, although
true from our modern perspective, is actually diminished in
importance if seen in the proper context. The Greek denotational
system was capable of expressing all numbers that would appear in
the lives and the everyday dealings of ancient people. They were
concerned neither with the number of atoms in a grain of sand, nor
with the number of stars in the universe (and if they were, they did
not have a clue about the actual numbers involved). Likewise, our
“modern” denotational system has its limitations, too. We can easily
express numbers that we consider “very large” from our point of
view, by using the exponential (scientific) notation, such as 10100,
and such numbers happen to be larger than any notion of number
(cardinality) that we could be concerned with today (e.g., “the
number of elementary particles in the universe”), but we cannot keep
on expressing larger and larger numbers with such a system, because
the exponents would end lined up in an awkward up-and-right-rising
tower; let alone that our system of naming such numbers (by
multiples of 1000, hence increasing the exponents by 3) does not
match well with the fact that the base of the exponents is 10. (We
can see this anomaly in the table for the modern Greek language,
above, where the symbol 1033 is
used to represent the number “one decillion”, but the prefix dec-
(“ten”) does not relate straightforwardly to 33.) It is conceivable
that cultures of the future will need to refer to even larger
numbers than those that seem large to us today, and hence will find
that our denotational system of numerals (and our language for
describing them) is inadequate.
|